本书采用创新且实用的教学策略,巧妙融合理论基础与实践应用,深入剖析自然语言处理(Natural Language Processing,NLP)领域的新进展,以及大语言模型(Large Language Model,LLM)的原理。书中不仅系统阐述了LLM的理论基础,还通过实际项目案例展示了如何将这些模型应用于构建RAG系统。本书遵循由浅入深的路径,从LLM的基础知识入手,详细阐释了模型的训练流程,并深入探讨了如何利用提示技术与模型进行高效交互。书中还重点介绍了两个在业界得到广泛认可的框架——LlamaIndex和LangChain,它们是开发RAG应用的强大工具。书中的项目案例不仅为读者提供了宝贵的实践经验,也能够加深读者对相关概念的理解和应用。此外,书中进一步探讨了包括智能体和微调在内的高级技术,这些技术能够显著提升问答系统的性能。
本书既适合无人工智能或NLP背景的读者入门学习,也可作为人工智能等专业本科生、研究生、博士后研究人员、讲师及行业从业者的进阶参考。
展开