搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
解析函数空间上算子的相似性(英文版)
0.00     定价 ¥ 118.00
图书来源: 浙江图书馆(由浙江新华配书)
此书还可采购15本,持证读者免费借回家
  • 配送范围:
    浙江省内
  • ISBN:
    9787030798527
  • 作      者:
    编者:李玉成
  • 出 版 社 :
    科学出版社
  • 出版日期:
    2025.01
收藏
内容介绍
不变子空间和约化子空间问题是泛函分析中的一个基本问题。算子的交换子和相似度可以帮助理解算子的结构。Toplitz算子是算子理论中一类重要的算子。算子的相似性是泛函分析中与不变子空间和约化子空间问题相关的一个有趣的话题。《Similarity of Operator on Analytic Function Spaces(解析函数空间上算子的相似性)》总结了Bergman空间、Dirichlet空间等解析函数空间中的相似和约化子空间问题。研究方法包括算子理论与无穷矩阵操作相结合的技术。《Similarity of Operator on Analytic Function Spaces(解析函数空间上算子的相似性)》主要面向泛函分析算子理论方向研究生以及相关方向的科研人员。
展开
精彩书摘
Chapter 1
  Operator on the Bergman Space
  1.1 Similarity Invariant of Analytic Toeplitz Operators
  Let B and T be the unit disk and the boundary of D respectively, and let L denote the Bergman space of analytic functions which belong to. It is well known that is a Hilbert space.then where dA is the normalized area measure on D, and
  For , bnzn, then the inner product of and g on the Bergman space is defined by
  In this sense has an orthonormal basis, where en . Letdenote the algebra of the bounded analytic functions on ID, for G H (D), Mf is an analytic Toeplitz operator (multiplication operator) on the Bergman space defined by, for any g a bounded linear operator on with
  where represents the collection of all bounded linear operators on An operator T is said to be strongly irreducible see,if there is no non-trivial idempotent operator in Af(T). Let be an analytic map, and Cb be the composition operator on i defined by
  We consider a finite Blaschke product B(z) with the following form
  In fact, if B(z) is a finite Blaschke product with n zeros, then so is the function Mb and Mbx have the same commutant and the same
  lattice of the reducing subspace, we may assume,without loss of generality, that for convenience. So we always denote the first factor of by z. When has zeros with multiplicity greater than one, we can consider a new Blaschke product, and Aut. We claim that except a finite subset S C D each has distinct zeros. In fact, let, is a finite subset of D, either B, has distinct zeros (see [67,111]).
  Lemma 1.1.1.
  Lemma 1.1.2.
  Definition 1.1.3.
  Lemma 1.1.4.
  Green-Stokes formula.
  The main result of the following lemma is given by [111], but we make a little correction of the coefficient of the basis.
  Lemma 1.1.5.
  (1.1.1)
  Lemma 1.1.6.
  (1)
  (2)
  Proof. (1)
  (1.1.2)
  (1.1.3)
  (1.1.4)
  (1.1.5)
  (1.1.6)
展开
目录
Contents
Preface i
CHAPTER 1
Operator on the Bergman Space 1
1.1 Similarity Invariant of Analytic Toeplitz Operators 1
1.2 Commutant of Analytic Toeplitz Operators 17
1.3 Compactness of a Class of Radial Operators 31
1.4 Similarity of a Class of Multiplication Operators 42
1.5 r^Berezin Transform and Radial Operator 57
1.6 A Class of Hilbert-Schmidt Operators on the Harmonic Bergman Space 71
1.7 The Operator Mznzn on Subspaces of Bergman Spaces over the Biannulus 83
1.8 Local Quasi-Similarity and Reducing Subspaces of Multiplication Operator 97
1.9 Quasi-Affinity and Reducing Subspaces of Multiplication Operator 106
1.10 Remarks 115
CHAPTER 2
Operator on the Dirichlet Space 117
2.1 Similarity and Commutant of a Class of Multiplication Operators 117
2.2 The Properties of Canonical Solution Operator to d 131
2.3 Compactness of Hankel Operators 141
2.4 Remarks 158
CHAPTER 3
Operator on the Fock Space 161
Quasi-Similarity and Reducing Subspaces of Multiplication Operator 161
The Norm of Hankel Operator Restricted to the Fock Space 168
Remarks 176
CHAPTER 4
Operator on the Soblev Disk Algebra 179
4.1 Similarity and Reducing Subspaces of Multiplication Operator 179
4.2 Remarks 185
CHAPTER 5
Operator on Banach Algebra 187
5.1 Algebra Matrix and Similarity Classification of Operators 187
5.2 Remarks 197
Conclusion 199
References 201
List of Symbols and Notations 207
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证