搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
大语言模型工程师手册(从概念到生产实践)
0.00     定价 ¥ 99.80
图书来源: 浙江图书馆(由浙江新华配书)
此书还可采购15本,持证读者免费借回家
  • 配送范围:
    浙江省内
  • ISBN:
    9787115667373
  • 作      者:
    作者:(罗)保罗·尤斯廷//(英)马克西姆·拉博纳|责编:贾静|译者:孟凡杰//方佳瑞
  • 出 版 社 :
    人民邮电出版社
  • 出版日期:
    2025-05-01
收藏
畅销推荐
内容介绍
AI技术已取得飞速发展,而大语言模型(LLM)正在引领这场技术革命。本书基于MLOps最佳实践,提供了在实际场景中设计、训练和部署LLM的原理与实践内容。本书将指导读者构建一个兼具成本效益、可扩展且模块化的LLM Twin系统,突破传统Jupyter Notebook演示的局限,着重讲解如何构建生产级的端到端LLM系统。 本书涵盖数据工程、有监督微调和部署的相关知识,通过手把手地带领读者构建LLM Twin项目,帮助读者将MLOps的原则和组件应用于实际项目。同时,本书还涉及推理优化、偏好对齐和实时数据处理等进阶内容,是那些希望在项目中应用LLM的读者的重要学习资源。 阅读本书,读者将熟练掌握如何部署强大的LLM——既能解决实际问题,又能具备低延迟和高可用的推理能力。无论是AI领域的新手还是经验丰富的从业者,本书提供的深入的理论知识和实用的技巧,都将加深读者对LLM的理解,并提升读者在真实场景中应用它们的能力。
展开
目录
第1章 理解LLM Twin的概念与架构
1.1 理解LLM Twin的概念
1.1.1 什么是LLM Twin
1.1.2 为什么构建LLM Twin
1.1.3 为什么不使用ChatGPT(或其他类似的聊天机器人)
1.2 规划LLM Twin的MVP
1.2.1 什么是MVP
1.2.2 定义LLM Twin的MVP
1.3 基于特征、训练和推理流水线构建机器学习系统
1.3.1 构建生产级机器学习系统的挑战
1.3.2 以往解决方案的问题
1.3.3 解决方案:机器学习系统的流水线
1.3.4 FTI流水线的优势
1.4 设计LLM Twin的系统架构
1.4.1 列出LLM Twin架构的技术细节
1.4.2 使用FTI流水线设计LLM Twin架构
1.4.3 关于FTI流水线架构和LLM Twin架构的最终思考
1.5 小结
第2章 工具与安装
2.1 Python生态环境与项目安装
2.1.1 Poetry:Python项目依赖与环境管理利器
2.1.2 Poe the Poet:Python项目任务管理神器
2.2 MLOps与MLOps工具生态
2.2.1 Hugging Face:模型仓库
2.2.2 ZenML:编排、工件和元数据
2.2.3 Comet ML:实验跟踪工具
2.2.4 Opik:提示监控
2.3 用于存储NoSQL和向量数据的数据库
2.3.1 MongoDB:NoSQL数据库
2.3.2 Qdrant:向量数据库
2.4 为AWS做准备
2.4.1 设置AWS账户、访问密钥和CLI
2.4.2 SageMaker:训练与推理计算
2.5 小结
第3章 数据工程
3.1 设计LLM Twin的数据采集流水线
3.1.1 实现LLM Twin数据采集流水线
3.1.2 ZenML流水线及其步骤
3.1.3 分发器:实例化正确的爬虫
3.1.4 爬虫
3.1.5 NoSQL数据仓库文档
3.2 采集原始数据并存储到数据仓库
3.3 小结
第4章 RAG特征流水线
4.1 理解RAG
4.1.1 为什么使用RAG
4.1.2 基础RAG框架
4.1.3 什么是嵌入
4.1.4 关于向量数据库的更多内容
4.2 高级RAG技术概览
4.2.1 预检索
4.2.2 检索
4.2.3 后检索
4.3 探索LLM Twin的RAG特征流水线架构
4.3.1 待解决的问题
4.3.2 特征存储
4.3.3 原始数据从何而来
4.3.4 设计RAG特征流水线架构
4.4 实现LLM Twin的RAG特征流水线
4.4.1 配置管理
4.4.2 ZenML流水线与步骤
4.4.3 Pydantic领域实体
4.4.4 分发器层
4.4.5 处理器
4.5 小结
第5章 监督微调
5.1 构建指令训练数据集
5.1.1 构建指令数据集的通用框架
5.1.2 数据管理
5.1.3 基于规则的过滤
5.1.4 数据去重
5.1.5 数据净化
5.1.6 数据质量评估
5.1.7 数据探索
5.1.8 数据生成
5.1.9 数据增强
5.2 构建自定义指令数据集
5.3 探索SFT及其关键技术
5.3.1 何时进行微调
5.3.2 指令数据集格式
5.3.3 聊天模板
5.3.4 参数高效微调技术
5.3.5 训练参数
5.4 微调技术实践
5.5 小结
第6章 偏好对齐微调
6.1 理解偏好数据集
6.1.1 偏好数据
6.1.2 数据生成与评估
6.2 构建个性化偏好数据集
6.3 偏好对齐
6.3.1 基于人类反馈的强化学习
6.3.2 DPO
6.4 实践DPO
6.5 小结
第7章 LLM的评估方法
7.1 模型能力评估
7.1.1 机器学习与LLM评估的对比
7.1.2 通用LLM评估
7.1.3 领域特定LLM评估
7.1.4 任务特定LLM评估
7.2 RAG系统的评估
7.2.1 Ragas
7.2.2 ARES
7.3 TwinLlama-3.1-8B模型评估
7.3.1 生成答案
7.3.2 答案评估
7.3.3 结果分析
7.4 小结
第8章 模型推理性能优化
8.1 模型优化方法
8.1.1 KV cache
8.1.2 连续批处理
8.1.3 投机解码
8.1.4 优化的注意力机制
8.2 模型并行化
8.2.1 数据并行
8.2.2 流水线并行
8.2.3 张量并行
8.2.4 组合使用并行化方法
8.3 模型量化
8.3.1 量化简介
8.3.2 基于GGUF和llama.cpp的模型量化
8.3.3 GPTQ和EXL2量化技术
8.3.4 其他量化技术
8.4 小结
第9章 RAG推理流水线
9.1 理解LLM Twin的RAG推理流水线
9.2 探索LLM Twin的高级RAG技术
9.2.1 高级RAG预检索优化:查询扩展与自查询
9.2.2 高级RAG检索优化:过滤向量搜索
9.2.3 高级RAG后检索优化:重排序
9.3 构建基于RAG的LLM Twin推理流水线
9.3.1 实现检索模块
9.3.2 整合RAG推理流水线
9.4 小结
第10章 推理流水线部署
10.1 部署方案的选择
10.1.1 吞吐量和延迟
10.1.2 数据
10.1.3 基础设施
10.2 深入理解推理部署方案
10.2.1 在线实时推理
10.2.2 异步推理
10.2.3 离线批量转换
10.3 模型服务的单体架构与微服务架构
10.3.1 单体架构
10.3.2
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证