AI技术已取得飞速发展,而大语言模型(LLM)正在引领这场技术革命。本书基于MLOps最佳实践,提供了在实际场景中设计、训练和部署LLM的原理与实践内容。本书将指导读者构建一个兼具成本效益、可扩展且模块化的LLM Twin系统,突破传统Jupyter Notebook演示的局限,着重讲解如何构建生产级的端到端LLM系统。
本书涵盖数据工程、有监督微调和部署的相关知识,通过手把手地带领读者构建LLM Twin项目,帮助读者将MLOps的原则和组件应用于实际项目。同时,本书还涉及推理优化、偏好对齐和实时数据处理等进阶内容,是那些希望在项目中应用LLM的读者的重要学习资源。
阅读本书,读者将熟练掌握如何部署强大的LLM——既能解决实际问题,又能具备低延迟和高可用的推理能力。无论是AI领域的新手还是经验丰富的从业者,本书提供的深入的理论知识和实用的技巧,都将加深读者对LLM的理解,并提升读者在真实场景中应用它们的能力。
展开