多智能体强化学习(Multi-Agent Reinforcement Learning,MARL)是机器学习中的一个领域,研究多个智能体如何在共享环境中学习最优的交互方式。这一领域在现代生活中有着广泛的应用,包括自动驾驶、多机器人工厂、自动化交易和能源网络管理等。
本书是一部系统阐述多智能体强化学习理论与技术的权威著作,清晰而严谨地介绍了MARL的模型、解决方案概念、算法思想、技术挑战以及现代方法。书中首先介绍了该领域的基础知识,包括强化学习理论和算法的基础、交互式博弈模型、博弈中的不同解决方案概念以及支撑MARL研究的算法思想。随后,书中详细介绍了利用深度学习技术的现代MARL算法,涵盖集中训练与分散执行、价值分解、参数共享和自博弈等思想。本书还附带了一个用Python编写的MARL代码库,其中包括自包含且易于阅读的MARL算法实现。
本书技术内容以易于理解的语言解释,并通过大量示例进行说明,既为初学者阐明了MARL的概念,也为专业的读者提供了高层次的见解。
展开