本书主要介绍了深度学习算法的基本原理和常用模型,包括卷积神经网络(CNN)、残差卷积神经网络(RCNN)、孪生神经网络(SNN)、生成对抗网络(GAN)等。深入探讨了深度学习算法在故障诊断领域的应用,针对机械设备中常见的轴承故障,介绍了一系列基于深度学习算法的故障诊断模型,对故障特征进行提取和识别,能够实现对机械设备故障类型的准确分类和定位。在寿命预测方面,本书详细介绍了基于深度学习算法的剩余寿命预测方法,并应用在轴承和刀具的剩余寿命预测中。通过对这些模型的结构、特点和适用场景的详细阐述,读者可以全面了解深度学习算法在故障诊断和寿命预测中的应用基础。
本书是一部具有学术价值和实践指导意义的专著,是作者多年科研成果的结晶。本书可供高校机械工程、计算机科学及相关专业的研究人员使用,特别是对于从事机械设备故障诊断和寿命预测工作的工程师和研究人员来说,本书是一本极具参考价值的书籍,也适合对深度学习感兴趣的科研人员和工程师参考。
展开