搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
流体力学建模——不稳定性与湍流(英文)
0.00     定价 ¥ 88.00
图书来源: 浙江图书馆(由JD配书)
此书还可采购25本,持证读者免费借回家
  • 配送范围:
    浙江省内
  • ISBN:
    9787576712605
  • 作      者:
    [以]伊戈尔·盖辛斯基(IgorGaissinski)
  • 出 版 社 :
    哈尔滨工业大学出版社
  • 出版日期:
    2024-03-01
收藏
作者简介
伊戈尔·盖辛斯基(lgor Gaissinski),以色列数学家,以色列理工大学航空工程学院高级研究员。
展开
内容介绍
本书是一部讲述近代流体力学成果的英文专著,本书认为数学方法和模型是应用数学和理论物理学的分支。本书致力于阐释流体力学建模的相关内容,由四章组成,其中包含大量有用的练习和解决方案。我们在每章末尾的参考书目中提供了相关主题的相对完整的参考资料。
展开
目录
Foreword
Preface
1 Mathematical Background
1.1 Dynamical systems
1.1.1 Vector felds and dynamical systems
1.1.2 Critical points in phase space
1.1.3 Higher-order autonomous systems
1.1.4 Dirac delta function
1.1.5 Special functions
1.1.6 Green's function
1.1.7 Boundary and initial value problems
1.2 Asymptotic behavior and stability
1.2.1 Asymptotic expansions
1.2.2 Asymptotic behavior of autonomous systems
1.2.3 Stability of autonomous systems
1.2.4 More on stability
1.3 Bifurcations
1.3.1 Instability and bifurcations
1.3.2 Saddle-node bifurcation
1.3.3 Transcritical and pitchfork bifurcations
1.3.4 Hopf bifurcation
1.3.5 Saddle-node bifurcation of a periodic orbit
1.3.6 Global bifurcation
1.4 Attractors
1.4.1 Chaotic motion and symbolic dynamics
1.4.2 Homoclinic tangles and Smale's horseshoe map
1.4.3 Poincaré return map
1.4.4 Lyapunov's exponents and entropy
1.4.5 Attracting sets and attractors
1.5 Fractals
1.5.1 Local structure of fractals
1.5.2 Operations with fractals
1.5.3 Fractal attractors in dynamical systems
1.6 Perturbations
1.6.1 Regular perturbation theory
1.6.2 Singular perturbation theory
1.7 Elements of tensor analysis
1.7.1 Transformations of coordinate systems
1.7.2 Covariant and contravariant derivatives
1.7.3 Christoffel symbols and curvature tensor
1.7.4 Integral formulas
1.8 Navier-Stokes equations for nonequilibrium gas mixture
1.8.1 Continuity,momentum and energy equations
1.8.2 Closing relations and transport coefficients
1.8.3 Boundary conditions
1.8.4 Deducing Navier-Stokes equation
1.8.5 Existence and uniqueness of solutions of the Navier—Stokes equation
1.8.6 Relativistic Navier—Stokes equation
1.9 Exercises
bliography
2 Models for Hydrodynamic Instabilities
2.1 Stability concepts
2.1.1 Boundary conditions
2.1.2 Inviscid and high-Reynolds—number flow
2.1.3 Basic definitions
2.2 Rayleigh—Taylor instability
2.2.1 Potential flow
2.2.2 Plane boundaries
2.2.3 Spherical boundaries
2.2.4 Nonlinear perturbation theory
2.2.5 Inhomogeneous fluids
2.2.6 Ⅵscous fluids
2.3 Kelvin-Helmholtz instability
2.3.1 Instability of annular incompressible jet
2.3.2 Rotating jets
2.3.3 Supersonic viscous jet
2.3.4 Supersonic viscous jet with Gaussian sound velocity distribution
2.3.5 Relativistic jet
2.4 Exercises
bliography
3 Models for Turbulence
3.1 Symmetries and conservation laws
3.1.1 Euler and Navier—Stokes equations
3.1.2 Symmetries
3.1.3 Conservation laws
3.2 Anomalous scaling exponents
3.2.1 Multifractal models
3.2.2 Random variables and correlation functions
3.2.3 Richardson-Kolmogorov concept of turbulence
3.2.4 Scaling of the structure hmctions
3.2.5 Dissipative and dynamical scaling
3.2.6 Fusion rules in turbulence systems
3.3 Calculation of scaling exponents
3.3.1 Basic formulas
3.4 Bifurcations for the Kuramoto-Sivashinsky equation
3.4.1 Symmetry:translations, reflections, and O(2)-equivariance
3.4.2 Kuramoto-Sivashinsky equation
3.5 Strange attractors and turbulence
3.5.1 The Taylor—Couette experiment
3.5.2 Dynamical systems with one observable
3.5.3 Limit capacity and dimension
3.5.4 Dimension and entropy
3.6 Global attractor for Navier-Stokes equation
3.6.1 The ladder inequality
3.6.2 Estimates
3.6.3 Length scales in the two-dimensional case
3.6.4 Three-dimensional regularity
3.6.5 The attractor dimension
3.7 Hierarchical sheU models
3.7.1 Gledzer-Ohkitani-Yamada shell model
3.7.2 (N,£)-sabra shell models
3.7.3 Navier-Stokes equations in the common wavelets repre
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证