本书聚焦人工智能数据与算法安全问题,主要介绍面向深度学习模型的攻防安全理论、技术及其应用。全书共7章。第1章介绍人工智能的基本概念与应用,以及人工智能安全技术现状。第2章介绍深度学习的背景知识,从模型性能、可解释性、鲁棒性、隐私性和公平性等多个角度,详细探讨深度学习模型的可信理论。第3、4章深入研究深度学习模型所面临的安全威胁,包括对抗攻击、中毒攻击、隐私窃取攻击和偏见操控攻击,以及相应的检测和防御方法,并将这些算法应用于联邦学习和强化学习场景中。第5章探讨深度学习模型的测试与评估方法,包括可靠性评估和潜在缺陷检测,并在实际场景中展示应用案例。第6章介绍攻防方法在图像识别、图数据挖掘、电磁信号识别和自然语言处理领域的应用。最后,在第7章中提供不同复杂程度的数据与算法安全实践案例,以帮助读者更好地理解和应用所学知识。
本书适合于图像识别、图数据挖掘及信号处理等领域的学者和从业人员,深度学习对抗攻防、中毒攻防、隐私窃取攻防等研究方向的初学者,包括本科生和研究生及人工智能应用安全领域相关从业者。
展开