本书围绕卷积神经网络在高光谱影像分类中的应用展开讨论和分析。全书内容分为7章。第1章结合高光谱遥感技术的发展论述了高光谱影像分类的内涵,总结了高光谱影像分类的主要技术方法,并由此引出了高光谱影像分类技术所涉及的主要问题。第2章介绍了卷积神经网络的基础理论,对卷积神经网络的研究现状进行了总结,研究分析了卷积神经网络在高光谱影像分类中的应用情况。第3章针对传统高光谱影像分类算法中空间信息利用不足的问题,引入局部二值模式、三维Gabor等纹理特征和双通道卷积神经网络模型,介绍了一种结合纹理特征的双通道卷积神经网络高光谱影像分类方法。第4章重点讨论了在卷积神经网络基础上发展的残差网络,针对深层残差网络存在特征重用减少的问题,设计了适用于高光谱影像分类的宽残差网络。第5章分析了残差网络的模型内部结构,构建了残差密集网络模型,充分利用了网络模型中不同单元提取的分层特征。第6章引入了注意力机制,设计了适用于高光谱影像分类的残差通道注意力网络,对网络模型中不同残差单元输出的特征赋以不同的权重,提取出更为有效的特征集,增强了提取特征的可分性。第7章对本书所介绍的内容进行了总结,对卷积神经网络在高光谱影像分类中的应用前景进行了展望。
展开