1. FOUNDATIONS
1.1 Propositional and Predicate Logic - Jerrold W. Grossman
1.2 Set Theory - Jerrold W. Grossman
1.3 Functions - Jerrold W. Grossman
1.4 Relations - John G. Michaels
1.5 Proof Techniques - Susanna S. Epp
1.6 Axiomatic Program Verification - David Riley
1.7 Logic-Based Computer Programming Paradigms - Mukesh Dalal
2. COUNTING METHODS
2.1 Summary of Counting Problems - John G. Michaels
2.2 Basic Counting Techniques - Jay Yellen
2.3 Permutations and Combinations - Edward W. Packel
2.4 Inclusion/Exclusion - Robert G. Rieper
2.5 Partitions - George E. Andrews and Andrew V. Sills
2.6 Burnside/Pólya Counting Formula - Alan C. Tucker
2.7 M?bius Inversion Counting - Edward A. Bender
2.8 Young Tableaux - Bruce E. Sagan
3. SEQUENCES
3.1 Special Sequences - Thomas A. Dowling and Douglas R. Shier
3.2 Generating Functions - Ralph P. Grimaldi
3.3 Recurrence Relations - Ralph P. Grimaldi
3.4 Finite Differences - Jay Yellen
3.5 Finite Sums and Summation - Victor S. Miller
3.6 Asymptotics of Sequences - Edward A. Bender and Juanjo Rué
3.7 Mechanical Summation Procedures - Kenneth H. Rosen
4. NUMBER THEORY
4.1 Basic Concepts - Kenneth H. Rosen
4.2 Greatest Common Divisors - Kenneth H. Rosen
4.3 Congruences - Kenneth H. Rosen
4.4 Prime Numbers - Jon F. Grantham and Carl Pomerance
4.5 Factorization - Jon F. Grantham and Carl Pomerance
4.6 Arithmetic Functions - Kenneth H. Rosen
4.7 Primitive Roots and Quadratic Residues - Kenneth H. Rosen
4.8 Diophantine Equations - Bart E. Goddard
4.9 Diophantine Approximation - Jeff Shalit
4.10 Algebraic Number Theory - Lawrence C. Washington
4.11 Elliptic Curves - Lawrence C. Washington
5. ALGEBRAIC STRUCTURES - John G. Michaels
5.1 Algebraic Models
5.2 Groups
5.3 Permutation Groups
5.4 Rings
5.5 Polynomial Rings
5.6 Fields
5.7 Lattices
5.8 Boolean Algebras
6. LINEAR ALGEBRA
6.1 Vector Spaces - Joel V. Brawley
6.2 Linear Transformations - Joel V. Brawley
6.3 Matrix Algebra - Peter R. Turner
6.4 Linear Systems - Barry Peyton and Esmond Ng
6.5 Eigenanalysis - R. B. Bapat
6.6 Combinatorial Matrix Theory - R. B. Bapat and Geir Dahl
6.7 Singular Value Decomposition - Carla D. Martin
7. DISCRETE PROBABILITY
7.1 Fundamental Concepts - Joseph R. Barr
7.2 Independence and Dependence - Joseph R. Barr
7.3 Random Variables - Joseph R. Barr
7.4 Discrete Probability Computations - Peter R. Turner
7.5 Random Walks - Patrick Jaillet
7.6 System Reliability - Douglas R. Shier
7.7 Discrete-Time Markov Chains - Vidyadhar G. Kulkarni
7.8 Hidden Markov Models — Narada Warakagoda
7.9 Queueing Theory - Vidyadhar G. Kulkarni
7.10 Simulation - Lawrence M. Leemis
7.11 The Probabilistic Method - Niranjan Balachandran
8. GRAPH THEORY
8.1 Introduction to Graphs - Lowell W. Beineke
8.2 Graph Models - Jonathan L. Gross
8.3 Directed Graphs - Stephen B. Maurer
8.4 Distance, Connectivity, Traversability, & Matchings - Edward R. Scheinerman and Michael D. Plummer
8.5 Graph Isomorphism and Reconstruction - Bennet Manvel, Adolfo Piperno and Josef Lauri
8.6 Graph Colorings, Labelings, & Related Parameters - Arthur T. White, Teresa W. Haynes, Michael A. Henning, Glenn Hurlbert, and Joseph A. Gallian
8.7 Planar Drawings - Jonathan L. Gross
8.8 Topological Graph Theory - Jonathan L. Gross
8.9 Enumerating Graphs - Paul K. Stockmeyer
8.10 Graph Families - Maria Chudnovsky, Michael Doob, Michael Krebs, Anthony Shaheen, Richard Hammack, Sandi Klavzar, and Wilfried Imrich
8.11 Analytic Graph Theory - Stefan A. Burr
8.12 Hypergraphs — András Gyárfás
9. TREES
9.1 Characterizations and Types of Trees - Lisa Carbone
9.2 Spanning Trees - Uri Peled
9.3 Enumerating Trees - Paul K. Stockmeyer
10. NETWORKS AND FLOWS
10.1 Minimum Spanning Tr
展开