《R & Python数据科学与机器学习实践》以动手实践的形式分绍了数据分析、统计分析和机器学习的相关内容,可以让读者在短时间内掌握使用R语言和Python从数据创建模型并获取结果的基本步骤,并用R & Python体验学习各种分析的“理论”和“实际思维方式”。全书共5章,其中第1章介绍了数据科学入门的基础知识,让读者对数据科学领域有一个整体认识;第2章介绍了R & Python的语法基础和编程入门相关知识,为编程基础薄弱的读者顺利学习本书打好坚实的编程基础;第3~4章介绍了非常重要的数据处理、数据分析和用R语言实现的统计建模方法;第5章介绍了用Python实现的以预测为目的的机器学习方法。对实践中经常遇到的数据质量问题和处理要点、回归模型、决策树、聚类、降推,以及常用的监督学习方法和深度学习等内容均进行了讲解。
《R & Python数据科学与机器学习实践》不是一本入门书,它是一本尽可能不使用数学公式面专注于利用的书,致力于让读者掌握使用R/Python实践数据科学与机器学习的基本技能并获得自身持续发展和深入学习所需的素养,特别适合有一定统计学和机器学习基础,想快速提升技能的程序员学习,也适合作为高校统计学、数据科学和人工智能相关专业的参考书。
展开