前言
第1章 从量子论观点和狄拉克的δ-函数谈傅里叶变换及其新应用
1.1 发展数理方法要有好符号
1.2 从德布罗意的波粒二象理论和δ-函数谈傅里叶变换
1.3 傅里叶变换的卷积的应用:扩散方程的解
1.4 算符δ-函数δ(a)δ(a+)和真空投影算符
1.5 用傅里叶变换和δ-函数导出相干态
1.6 算符公式ana+m=(-i)m+n:Hm,n(ia+,ia):和a+man=;Hn,m(a,a+)
1.7 反正规乘积排序算符内的积分
1.8 复δ-函数的围道积分表示
1.9 产生算符本征态及其性质
第2章 算符δ-函数的乘积在有序化算符中的应用
2.1 从δ(x-X)导出坐标表象完备性的高斯积分形式
2.2 从δ(p-P)导出动量表象完备性的正规乘积形式
2.3 用IWOP方法推导径向坐标算符的正规乘积展开
2.4 用分立的傅里叶变换和量子力学表象推导泊松求和公式
2.5 |k,x)c表象
2.6 算符δ-函数位势中的能量量子化
2.7 δ(x-X)δ(p-P),δ(p-P)δ(x-X)和δ(p-P)δ(x-X):应用于算符有序化
2.8 三种排序的统一描述
2.9 混合态表象的正交性
2.10 关于3(X1-X2)币N 8(P1+P2)的正规排序的讨论
2.11 δ(n1-X1-X2/根号2)δ(n2-P1-P2/根号2)的物理意义
2.12 Fokker-Planck微分运算在纠缠态表象中的实现
2.13 在|n)表象中求对应二维拉普拉斯微商运算的玻色算符
2.14 纠缠形式的维格纳算符
2.15 相干一纠缠态的构造
2.16 两粒子间的硬壳位势的薛定谔方程解和量子化条件
2.17 纠缠态表象中的广义傅里叶变换
第3章 从量子力学表象的完备性导出厄密多项式和斯特林数
3.1 从Xn的正规排序Xn=(2i)-n:Hn(iX):引出厄密多项式
3.2 Hn(X)=2n:Xn:的证明及应用
3.3 厄密多项式的乘积公式
3.4 算符恒等式Hn(fX)=(根号1-f2)n1:Hn(fX)/(根号1-f2)
3.5 含厄密多项式的厄密型级数和公式
3.6 用算符厄密多项式方法推导含Hn(x)的新二项式定理
3.7 坐标算符f(X)→:F(X):的方法
3.8 exp(-1/4·а2/аX2)xn=2-nHn(x)和exp(-1/4·а2/аX2)Hn(x)=根号2nHn(x/根号2)的证明
3.9 算符公式1/根号∏exp(-1/4·а2/аX2)e-(x-X)2=δ(x-X)的证明及应用
3.10 含斯特林数和厄密多项式的量子算符公式
3.11 (a+ra)k,eλn”a和(a+rar)k的正规乘积展开
第4章 拉盖尔多项式
4.1 从算符厄密多项式方法直接推导出拉盖尔多项式
4.2 拉盖尔多项式的倒易公式和双变量厄密多项式的引入
4.3 关于拉盖尔多项式的新积分公式
4.4 含拉盖尔多项式的负二项式定理的推导
4.5 算符拉盖尔多项式在划分福克空间上的应用
第5章 量子力学基本表象的正态分布相貌
5.1 从|x)(x|给出的正态分布及其卷积
5.2 正态分布的基本性质一
5.3 正态分布是对应同一方差的最大熵分布
5.4 拉东变换与正态分布
5.5 傅里叶切片定理及其在维格纳算符上的应用
5.6 用高斯卷积把维格纳算符变换为纯态
第6章 对Ket-Bra的x-排序、δ-排序积分方法
6.1 多模指数算符e-iP1△lkXk的x-排序和δ-排序展开公式
6.2 单-双模组合压缩算符的简洁形式
6.3 积分广义压缩算符
第7章 范氏变换在算符排序中的应用
7.1 对应量子力学基本对易关系的积分变换
7.2 δ(x-X)δ(p-P)和δ(p-P)δ(x-X)的Weyl-排序
7.3 积分核1/∏:exp[±2i(x-X)(p-P)]:与维恪纳算符的关系
7.4 维格纳函数的新积分变换及用途
7.5 从δ-排序、x-排序到Weyl-排序 7.6 从Weyl-排序到δ-排序和x-排序
第8章 用量子力学表象和IWOP方法研究分数变换
8.1 分数傅里叶变换的量子力学观
8.2 分数压缩变换
8.3 在纠缠态表象中的分数傅里叶变换
8.4 汉克尔变换的量子力学观
8.5 分数汉克尔变换
8.6 分数汉克尔变换的可加性
第9章 广义小波变换的量子力学观
9.1 小波变换的量子力学观
9.2 用量子力学方法找母小波函数
9.3 小波-分数联合变换
9.4 复小波变换
9.5 |n)表象中的母小波函数
第10章 勒让德函数的新形式与母函数以及泊松积分的量子力学观
10.1 勒让德函数的母函数与减光子压缩态的矩生成函数的关系
10.2 勒让德函数新形式的出现
10.3 关于勒让德函数的新积分公式和二项式定理
10.4 泊松积分的量子力学观
第11章 贝塞尔方程的量子力学观
11.1 导致贝塞尔方程的一个算符恒等式
11.2 贝塞尔方程导出纠缠态表象的矩阵元
11.3 求(d2/dx2+1/x·d/dx-v2/x2)|v,x)的汉克尔变换
第12章 z-变换的量子力学观
12.1 z-变换的简单回顾
12.2 z-变换作为从|n)到(z))的变换
12.3 z-变换性质的量子力学观
第13章 量子希尔伯特变换和梅林变换的量子力学观
13.1 | x)(x|的希尔伯特变换x-1的正规排序展开
13.2 用希尔伯特变换和纠缠态表象导出1/X1-X2-λ的正规乘积展开
13.3 梅林变换的量子力学观
第14章 两类新特殊函数
14.1 第一类新特殊
展开