本书系统地阐述机器学习中常见的几类算法模型,包括模型的思想、原理及实现细节等。同时,本书还结合了当前热门的机器学习框架sklearn,对书中所涉及的模型在用法上进行详细讲解。
全书共10章,第1章介绍机器学习开发环境的配置;第2章讲解线性回归模型的基本原理、回归模型中常见的几种评价指标,以及用于有监督模型训练的梯度下降算法;第3章介绍逻辑回归模型的基本原理和分类模型中常见的几种评价指标;第4章介绍模型的改善与泛化,包括特征标准化、如何避免过拟合及如何进行模型选择等;第5章讲解K近邻分类算法的基本原理及kd树的构造与搜索;第6章介绍朴素贝叶斯算法的基本原理;第7章介绍几种常见的文本特征提取与模型复用,包括词袋模型和TF-IDF等;第8章讲解决策树与集成学习,包括几种经典的决策树生成算法和集成模型;第9章介绍支持向量机的基本原理与求解过程;第10章介绍几种经典的聚类算法及相应的评价指标计算方法。
本书包含大量的代码示例及实际案例介绍,可以作为计算机相关专业学生入门机器学习的读物,也可以作为非计算机专业及培训机构的参考用书。
展开