搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
社交媒体虚假信息检测基础与模型
0.00     定价 ¥ 98.00
图书来源: 浙江图书馆(由浙江新华配书)
此书还可采购25本,持证读者免费借回家
  • 配送范围:
    浙江省内
  • ISBN:
    9787030727138
  • 作      者:
    作者:徐凡//黄琪|责编:阚瑞
  • 出 版 社 :
    科学出版社
  • 出版日期:
    2022-10-01
收藏
内容介绍
社交媒体虚假信息自动检测研究受到了计算语言学界和产业界的广泛关注,并逐步成为研究热点。本书基于自然语言处理视角,结合机器学习、神经网络、语料库语言学等相关技术,以作者的一系列研究成果为内容主线,系统介绍了社交媒体虚假信息检测的基础和模型。全书分为基础篇和模型篇,共8章。在基础篇中,作者首先给出虚假信息的定义及分类,接着从统计学习和深度学习两个方面介绍虚假信息检测依赖的相关技术。在模型篇中,作者全面探索了社交媒体虚假信息检测在语义、知识、传播、用户和多元信息融合5个方面的计算模型,最后对社交媒体虚假信息检测进行了深度展望。本书对社交媒体虚假信息检测的关键技术进行了深入的研究,提出了相关问题的一些解决方法,并设计了相应的算法和实验。实验表明,本书提出的这些方法有助于提高社交媒体虚假信息检测的分析性能,同时减少对大规模语料库的依赖性,为今后的社交媒体虚假信息检测研究奠定了一个重要基础,为同类研究提供了一个参考。 本书可作为从事自然语言处理、计算语言学、数据挖掘研究的科研、管理等相关人员的参考用书,也可供高等院校语言学、智能科学与技术、管理科学与工程等教育类、信息类和管理类相关研究生及本科生使用。
展开
目录
前言
第一篇 基础篇
第1章 社交媒体虚假信息检测概述
1.1 引言
1.2 社交媒体概述
1.3 虚假信息概述
1.3.1 背景
1.3.2 术语定义
1.4 虚假信息检测计算模型综述
1.4.1 传统机器学习模型
1.4.2 深度学习模型
1.5 评测指标
1.6 本章小结
参考文献
第2章 相关技术
2.1 引言
2.2 传统机器学习模型
2.2.1 支持向量机
2.2.2 互信息和点互信息
2.2.3 决策树
2.2.4 主题模型
2.2.5 词频-逆文档频率
2.3 深度学习技术
2.3.1 词向量
2.3.2 word2vec和GLOVE模型
2.3.3 循环神经网络
2.3.4 卷积神经网络
2.3.5 BERT模型
2.3.6 对抗生成网络
2.3.7 图神经网络
2.4 本章小结
参考文献
第二篇 模型篇
第3章 融合语义的虚假信息检测模型
3.1 引言
3.2 基于主题的谣言检测模型
3.2.1 背景
3.2.2 算法模型
3.2.3 实验分析
3.3 基于全局语义信息的谣言检测模型
3.3.1 背景
3.3.2 算法模型
3.3.3 实验分析
3.4 本章小结
参考文献
第4章 融合知识的虚假信息检测模型
4.1 引言
4.2 基于世界知识的虚假新闻检测模型
4.2.1 背景
4.2.2 算法模型
4.2.3 实验分析
4.3 基于语言知识的虚假新闻检测模型
4.3.1 背景
4.3.2 算法模型
4.3.3 实验分析
4.4 本章小结
参考文献
第5章 融合传播的虚假信息检测模型
5.1 引言
5.2 基于时空结构的谣言检测模型
5.2.1 背景
5.2.2 算法模型
5.2.3 实验分析
5.3 本章小结
参考文献
第6章 融合用户的虚假信息检测模型
6.1 引言
6.2 基于用户行为的谣言检测模型
6.2.1 背景
6.2.2 算法模型
6.2.3 实验分析
6.3 本章小结
参考文献
第7章 多元信息融合的虚假信息检测模型
7.1 引言
7.2 基于多元信息融合和推理的虚假新闻检测模型
7.2.1 背景
7.2.2 算法模型
7.2.3 实验分析
7.3 本章小结
参考文献
第8章 总结与展望
8.1 本书总结
8.2 未来展望
8.2.1 多模态虚假信息检测
8.2.2 多元信息融合检测
8.2.3 虚假信息早期检测
8.3 结束语
附录A 虚假信息检测常用数据集资源
附录B 虚假信息检测开源代码资源
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证