本书介绍了大数据分析中使用的基本数学模型,并对相关实际问题进行了应用参考。本书使用了必要的数学工具,并将它们应用于当前的数据分析问题,进一步跨学科应用于生物学、语言学、社会学、电气工程、计算机科学和人工智能等领域,本书给出的例子包括DNA测序、主题提取、社区检测、压缩感知、垃圾邮件过滤和国际象棋引擎等。对于模型,我们使用了大量的数学知识和方法——从基本的数值线性代数、统计学和优化到更专业的游戏、图甚至复杂性理论。本书涵盖了大数据分析中所有常用的相关技术,在本书中体现为排序、在线学习、推荐系统、分类、聚类、线性回归、稀疏恢复、神经网络和决策树等章节。本书章节的结构和篇幅都是标准化的,以方便学生和教师使用。
展开