搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
数智维修导论(精)
0.00     定价 ¥ 188.00
图书来源: 浙江图书馆(由浙江新华配书)
此书还可采购25本,持证读者免费借回家
  • 配送范围:
    浙江省内
  • ISBN:
    9787111733430
  • 作      者:
    作者:栗琳|责编:李万宇//王春雨
  • 出 版 社 :
    机械工业出版社
  • 出版日期:
    2023-08-01
收藏
畅销推荐
内容介绍
本书系统论述了装备维修保障数智化变革的理论与实践,是对数智维修这一全新领域的一次极为有益的探索。本书基于作者数十年的装备维修保障研究经验,全面梳理了数智维修的概念内涵及其生态系统,论述了数智维修的数据管理与应用方法,研究了面向数智维修的状态感知与评估、故障诊断与寿命预测、信息融合、决策与优化、资源供应保障等方面的关键技术,并通过典型案例展示了数智维修的具体形态及发展趋势。 本书兼具顶层理论体系及技术框架,对我国数智维修领域变革具有重要的指导意义,值得相关领域的专家、学者、工程技术人员及项目管理人员研读。
展开
目录
序一
序二
前言
第1章 绪论
1.1 数智维修概念内涵
1.1.1 维修理念的发展
1.1.2 维修信息化与数智维修
1.1.3 数智维修的特征
1.2 数智维修产生的背景
1.2.1 智能社会为数智维修的发展创造了基本条件
1.2.2 智能化战争呼唤装备维修保障模式变革
1.2.3 维修信息化建设为数智维修奠定数据基础
1.2.4 故障预测与健康管理技术推动了数智维修的发展
1.3 数智维修体系架构与业务模型
1.3.1 单装与装备体系数智维修
1.3.2 单装数智维修体系架构
1.3.3 装备体系数智维修运行架构
1.3.4 数智维修业务模型
1.4 数智维修现状及趋势
1.4.1 智能精确的保障理念在实践中不断发展
1.4.2 管理创新将成为一种战略性方法技术
1.4.3 先进维修技术在数智维修中的应用不断拓展
1.5 本书框架结构
第2章 数智维修生态系统
2.1 数智维修发展的顶层战略
2.2 数智维修建设的基本原则
2.2.1 数智维修本质上是维修业务的转型升级
2.2.2 数据科学将在数智维修中发挥核心作用
2.2.3 物联网在资源感知与响应中发挥关键作用
2.2.4 人工智能技术支撑装备维修保障动态决策与优化
2.2.5 数字孪生技术在全寿命周期装备维修保障中逐渐获得应用
2.3 数智维修运行的基础平台
2.3.1 数据采集层
2.3.2 数据管理层
2.3.3 数据处理层
2.3.4 业务组件层
2.3.5 场景应用层
2.4 数智维修实施的支撑条件
2.4.1 实施组织变革
2.4.2 推进观念转变
2.4.3 强化标准化数据治理
第3章 数智维修数据管理
3.1 面向全寿命周期的维修数据
3.2 维修元数据管理
3.3 结构化维修数据管理
3.3.1 维修主数据管理
3.3.2 装备维修保障参考数据及事务数据管理
3.3.3 装备维修保障监测数据管理
3.3.4 维修保障分析数据管理
3.4 非结构化维修数据管理
3.5 维修数据质量评估与管理
3.5.1 维修数据质量管理环节
3.5.2 数据质量控制
3.5.3 数据质量评估
3.6 数智维修数据安全
第4章 数智维修状态感知与评估
4.1 状态感知与评估概述
4.2 状态感知技术
4.2.1 典型系统状态参数选择
4.2.2 典型传感器的应用
4.2.3 状态感知数据预处理
4.3 状态特征提取技术
4.3.1 状态特征提取的工作内容
4.3.2 基于感知数据的特征计算
4.3.3 状态特征的优化选择与提取技术
4.4 健康状态评估方法
4.4.1 健康状态等级
4.4.2 神经网络模型
4.4.3 灰色关联分析法
4.4.4 模糊综合评判法
4.5 典型应用
4.5.1 波音737-800飞机应用案例
4.5.2 美国海军舰船综合状态评估系统
4.5.3 “猛禽”战斗机F119发动机应用案例
第5章 数智维修故障诊断与寿命预测
5.1 故障诊断与寿命预测概述
5.2 基于机器学习的故障诊断方法与技术
5.2.1 故障诊断方法分类
5.2.2 基于深度学习的故障诊断技术
5.2.3 故障诊断应用数据智能技术应关注的问题
5.3 数据驱动的寿命预测方法与技术
5.3.1 数据驱动的寿命预测框架
5.3.2 寿命预测的目标及方法
5.3.3 基于深度学习的寿命预测技术
5.3.4 寿命预测模型的评价
5.4 典型应用
5.4.1 阿帕奇直升机机队健康与使用监控系统
5.4.2 EJ200发动机故障预测与健康管理
第6章 数智维修信息融合
6.1 数智维修信息融合概述
6.1.1 数智维修信息融合范围
6.1.2 数智维修信息融合思路
6.1.3 数智维修信息融合效果
6.2 维修数据到维修信息的转换
6.2.1 基于关联挖掘的维修数据关系梳理
6.2.2 维修数据的密度聚类异常标注方法
6.2.3 维修数据的异构模糊匹配
6.3 维修信息向维修知识的转换
6.3.1 多源异构装备维修知识自动抽取
6.3.2 维修多维度知识相关性分析
6.3.3 维修信息融合与集成
6.4 典型应用
6.4.1 美国陆军全球作战保障系统
6.4.2 某型船用柴油机非结构化数据融合
第7章 数智维修资源保障
7.1 基于感知与响应的维修资源规划
7.1.1 数智维修对资源保障的要求
7.1.2 感知与响应保障系统的构成
7.2 维修资源感知与数据分析
7.2.1 维修资源数据感知
7.2.2 维修资源数据智能分析
7.2.3 维修资源储存与管理
7.3 维修资源可视化与保障建模技术
7.3.1 维修资源可视化技术
7.3.2 维修资源建模与优化方法
7.3.3 维修资源模型开发及应用技术
7.4 典型应用
7.4.1 某部队装备智能仓储与运维典型实践
7.4.2 美国海军基于5G无线技术的智能仓库
第8章 数智维修决策与优化
8.1 数智维修决策应用场景
8.2 维修业务数据分析模型
8.2.1 基于模糊
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证