本书共分9章。第1章为绪论,简要介绍国内外关于滚动轴承的特征提取、智能故障诊断、性能退化评估以及剩余使用寿命预测技术等方法;第2章主要针对滚动轴承进行了振动机理分析、故障特征分析,并对滚动轴承的动力学特性进行了研究;第3章介绍滚动轴承振动信号的时域、频域、时频域特征提取方法,特征优选方法,以及基于深度学习的特征学习方法;第4章介绍将振动信号转换为图像信号后,使用VGGNetl6、迁移学习、WGAN等方法的滚动轴承故障诊断方法;第5章介绍基于支持向量机与单分类支持向量机等优化模型后的滚动轴承性能退化评估方法;第6章介绍基于支持向量数据描述方法的滚动轴承性能退化评估方法;第7章介绍基于概率建模、基于边界距离和基于融合概率建模边界距离的三种滚动轴承性能退化评估方法;第8章介绍基于径向基神经网络的滚动轴承性能退化评估方法与剩余寿命预测方法;第9章介绍结合卷积注意力与长短时记忆网络的滚动轴承剩余寿命预测方法。
展开