Preface
Acknowledgements
Author biography
Units and conventions
1 QCD phenomenology
1.1 Electron-muon scattering
1.2 Form factors
1.3 Elastic electron-proton scattering and the proton form factors
1.4 Inelastic electron-proton scattering
1.5 The parton model and Bjorken scaling
1.6 Valence partons and sea partons
1.7 Beyond the naive parton model
1.7.1 Gluon emission cross section
1.7.2 Small-angle approximation
1.7.3 Embedding γ*-parton scattering in DIS
1.8 DGLAP evolution
1.9 Hadron production in e*e- collisions
1.10 Fragmentation functions
1.11 Solution of the DGLAP equations using Mellin moments
1.12 Drell-Yan scattering
References
2 Weak interactions
2.1 Early models of the weak interaction
2.2 Muon decay
2.3 Charged pion decay
2.4 Electron-neutrino and electron-antineutrino scattering
2.5 Neutrino-quark scattering
2.5.1 Charge raising current
2.5.2 Charge lowering current
2.5.3 Differential cross section
2.5.4 Embedding
2.6 Weak neutral currents
2.7 The Cabibbo angle and the CKM matrix
2.7.1 The Cabibbo-Kobayashi-Maskawa (CKM) matrix
References
3 Electroweak unification and the Higgs mechanism
3.1 Electroweak Feynman rules
3.2 Massive gauge fields with local gauge symmetry
3.2.1 Spontaneous symmetry breaking
3.2.2 Breaking of a continuous local symmetry
3.3 Gauge boson masses in SU(2)L X U(1)γ
3.3.1 The resulting particle spectrum
3.3.2 Fermion masses
3.4 The discovery of the Higgs boson
3.4.1 The H →γγ decay channel
3.4.2 The H →ZZ → 41 decay channel
3.4.3 The H → τ+τ- decay channel
3.4.4 Other decay channels and the nature of the Higgs
References
4 Basics of f'mite temperature quantum field theory
4.1 Partition function for a quantum harmonic oscillator
4.1.1 The QHO canonical partition function in the energy basis
4.1.2 Computing the QHO partition function using the path integral formalism
4.2 The partition function for a free scalar field theory
4.2.1 Fourier representation of the fields
4.2.2 Tricks for evaluating sum-integrals
4.3 Free scalar thermodynamics
4.3.1 Low temperature limit
4.3.2 High-temperature limit
4.4 The need for resummation
4.5 Perturbative expansion of thermodynamics for a scalar field theory
4.5.1 One loop
4.5.2 Two loops
4.5.3 Three loops
4.5.4 Pressure through g5
4.6 Screened perturbation theory
4.6.1 One-loop contribution
4.6.2 Two-loop contribution
4.6.3 Three-loop contribution
4.6.4 Pressure to three loops
4.6.5 Mass prescription
4.6.6 The tadpole mass prescription
4.6.7 Three-loop SPT Pressure
References
5 Hard-thermal-loops for QED and QCD
5.1 Photon polarization tensor
5.1.1 Generalization to d-dimensions
5.1.2 The HTL polarization tensor
5.1.3 Generalization to QCD
5.2 Fermionic self-energy
5.3 Collective modes
5.3.1 Gluon modes
5.3.2 Quark modes
5.3.3 Collective modes in an isotropic QGP
5.3.4 Gluon modes
5.3.5 Landau damping
5.3.6 Quark modes
5.4 Hard-thermal-loop effective action
5.4.1 Minkowski-space HTL gluon propagator
5.4.2 Minkowski-space HTL quark propagator
5.4.3 Three-gluon vertex
5.4.4 Four-gluon vertex
5.4.5 Quark-gluon three-vertex
5.4.6 Quark-gluon four-vertex
5.4.7 Hard thermal loop effective Lagrangian
5.4.8 Euclidean space HTL effective Lagrangian and vertex functions
5.5 Hard-thermal-loop resummed thermodynamics
5.5.1 Contributions to the HTLpt thermodynamic potential through NNLO
5.5.2 NNLO HTLpt thermodynamic potential
5.5.3 NNLO result for equal chemical potentials
5.5.4 NNLO result--gengral case
5.5.5 Mass prescription
5.5.6 Thermodynamic functions and suscept
展开