本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于“回归事物本质,规律性、系统性地思考问题”“理论为实践服务并且反过来充实理论,为更多人服务”的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。
全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的“到底是什么,为什么要这样做”的通俗理解。尽可能通过对应到日常生活中的现象来进行讲述。第2部分是机器学习模型、方法及本质,这一部分针对机器学习的方法论及具体的处理过程进行阐述。涉及数据准备、异常值的检测和处理、特征的处理、典型模型的介绍、代价函数、激活函数及模型性能评价等,是本书的核心内容。我们学习知识的主要目的是解决问题,特别是对于企业的从业人员,对在商业实战环境中出现的问题,希望通过机器学习的方式来更好地解决。第3部分是机器学习实例展示。
本书内容系统、选材全面、知识讲述详细、易学易用,兼具实战性和理论性,适合机器学习的初学者与进阶者学习使用。
展开