本书对二维、三维目标检测技术涉及的骨干网络及入门必备的计算机视觉算法进行全面的介绍。本书由浅入深地介绍了MNIST、ImageNet、CIFAR、波士顿房产、ModelNet等经典二维、三维数据集和相关国际赛事,还介绍了TensorFlow中的二维卷积层、全连接层、激活层、池化层、批次归一化层、随机失活层的算法和梯度下降原理,AlexNet、VGG、ResNet、DarkNet、CSP-DarkNet等经典骨干网络的设计原理,以及PointNet、GCN等三维计算机视觉神经网络。此外,本书通过设计巧妙且具体的案例,让读者稳步建立扎实的编程能力,包括数据集的制作和解析、神经网络模型设计和开销估算、损失函数的设计、神经网络的动态模式和静态模式的训练方法和过程控制、神经网络的边缘计算模型量化、神经网络的云计算部署。完成本书的学习,读者可以继续阅读与本书紧密衔接的《深入理解计算机视觉:在边缘端构建高效的目标检测应用》,将所学的计算机视觉基础知识运用到目标检测的神经网络设计中,对边缘计算环境下的神经网络进行游刃有余的调整。
本书适合具备一定计算机、通信、电子等理工科专业基础的本科学生、研究生及软件工程师阅读,读者需具备高等数学、线性代数、概率论、Python编程、图像处理等基础知识。
展开