前言
第1章 AI编译器基础
1.1AI编译器概述
1.1.1AI芯片及其分类
1.1.2AI编译器的结构与特征
1.2常用AI编译器介绍
1.2.1TVM整体架构
1.2.2TensorFlow XLA整体架构
1.2.3Glow整体架构
1.3LLVM编译器基础
1.3.1LLVM前端工作流程
1.3.2LLVM IR格式和语法
1.3.3LLVM后端工作流程
1.4GPGPU编译器基础
1.4.1GPGPU编译器工作流程
1.4.2Clang对CUDA的处理
1.4.3GPGPU编译器的IR优化
第2章 开源AI编译器实现分析
2.1TVM的系统设计
2.1.1TVM的图级优化
2.1.2TVM的计算与调度
2.1.3TVM的自动调优框架
2.2TensorFlow XLA的系统设计
2.2.1XLA的聚类过程
2.2.2XLA的IR设计和编译过程
2.2.3开启XLA的方式
2.2.4XLA JIT的图优化过程
2.2.5XLA JIT的代码生成
2.3Glow的系统设计
2.3.1Glow的高阶IR
2.3.2Glow的低阶IR
2.3.3Glow的量化方法
2.3.4Glow的后端设计
2.4AI编译器特性总结
2.4.1AI编译器的多阶IR设计
2.4.2AI编译器的前端优化
2.4.3AI编译器的后端优化
第3章 定制化AI编译器设计与实现
3.1定制化AI编译器设计框架
3.2TVM的高阶中间表示
3.2.1TVM高阶中间表示的表达
3.2.2TVM高阶中间表示的数据表示实现
3.2.3TVM高阶中间表示的算子实现
3.3TVM的低阶中间表示
3.3.1TVM低阶中间表示的表达
3.3.2TVM代码生成的定制化开发
3.3.3TVM运行时的定制化开发
3.4TVM的前后端优化
3.4.1TVM pass的功能与实现
3.4.2TVM的前端优化
3.4.3TVM的后端优化
第4章 GPGPU编译器后端设计
4.1LLVM后端开发流程
4.1.1异构计算程序工作流程
4.1.2LLVM后端执行流程
4.1.3LLVM中的pass及其管理机制
4.2指令选择
4.2.1指令选择原理与实现方式
4.2.2基于SelectionDAG的指令选择
4.2.3快速指令选择
4.2.4全局指令选择
4.3指令调度
4.3.1指令调度原理
4.3.2LLVM中的指令调度器及其工作过程
4.3.3调度pass的定制
4.4寄存器分配
4.4.1寄存器分配原理
4.4.2LLVM寄存器分配
4.4.3贪厌寄存器分配实现过程分析
第5章 张量核的编程方法与编译器支持
5.1沃尔塔、图灵和安培架构特性
5.1.1沃尔塔架构特性
5.1.2图灵架构特性
5.1.3安培架构特性
5.2张量核编程方法
5.2.1WMMA API及其用法
5.2.2CUTLASS中的张量核编程
5.3编译器后端对张量核的支持
5.3.1wmma PTX指令及其用法
5.3.2mma和ldmatrix PTX指令及其用法
5.3.3WMMA intrinsic函数定义
5.3.4NVPTX后端对wmma PTX指令的支持
第6章 AI模型性能分析与编译器优化方法
6.1AI模型性能的衡量指标和影响因素
6.1.1计算访存比
6.1.2算术强度和操作字节比
6.1.3内存级并行性和线程束并行性
6.2SM占用率及其编程接口
6.2.1理论占用率和实际占用率
6.2.2理论占用率约束条件分析
6.2.3CUDA运行时占用率编程接口
6.3基于占用率的指令调度优化
6.3.1AMD GPU编程模型和硬件执行模型
6.3.2AMDGPU后端的指令调度算法优化
第7章 AI芯片软硬件系统接口设计
7.1GPGPU软硬件接口设计
7.1.1GPGPU主机端编程接口
7.1.2内核分派过程
7.1.3GPGPU硬件分派过程
7.2AI加速器软硬件接口设计
7.2.1AI加速器硬件架构
7.2.2AI加速器设备软件栈
7.3量化技术与实现
7.3.1量化技术原理
7.3.2算子量化和激活函数量化
7.3.3激活函数量化方法
参考文献
展开