本书围绕电商、资讯等众多实际应用背后的内核,即智能推荐技术,系统介绍经典和前沿技术,包括基于邻域、矩阵分解、深度学习、迁移学习、联邦学习等的建模方法和推荐算法。本书围绕用户行为数据的建模问题组织内容,全书共分6部分:第1部分(第1章)为背景和基础;第2部分(第2~4章)为单行为推荐,是指仅对一种显式反馈(如评分)或一种隐式反馈(如浏览)数据进行建模;第3部分(第5~6章)为多行为推荐,是指同时考虑浏览和购买等包含多种行为的数据;第4部分(第7~8章)为序列推荐,是指同时关注用户行为和这些行为的先后顺序;第5部分(第9~10章)为联邦推荐,更加关注用户行为中的隐私和数据安全问题;第6部分(第11章)为总结与展望。全书综合梳理了多个智能推荐问题和相关技术,分析了方法的优缺点和内在联系,并在每章结束时提供了详细的参考文献和有针对性的习题。
本书可以作为计算机科学与技术、软件工程等相关专业的研究生和高年级本科生的教材,也可以作为推荐系统工程师的参考手册。
展开