搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
无监督学习方法及其应用
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787121305023
  • 作      者:
    谢娟英著
  • 出 版 社 :
    电子工业出版社
  • 出版日期:
    2016
收藏
作者简介
  谢娟英,博士,副教授,硕士生导师,中国计算机学会高级会员。 "Health Information Science and Systems”副主编。主要研究方向为机器学习、数据挖掘、生物医学大数据分析、智能信息处理等。
展开
内容介绍
  无监督学习是机器学习的一个重要分支,其在机器学习、数据挖掘、生物医学大数据分析、数据科学等领域有着重要地位。本书阐述作者近年在无监督学习领域所取得的主要研究成果,包括次胜者受罚竞争学习算法、K-means学习算法、K-medoids学习算法、密度学习算法、谱图聚类算法;最后介绍了无监督学习在基因选择、疾病诊断中的应用。
展开
目录
第1章  绪论 1
1.1  机器学习简介 1
1.2  无监督学习简介 2
第2章  数据预处理与样本相似性度量 31
2.1  数据预处理方法 31
2.2  样本相似性度量方法 48
第3章  聚类结果评价指标 55
3.1  内部评价指标 55
3.2  外部评价指标 72
第4章  竞争学习算法 87
4.1  传统次胜者受罚竞争学习算法 87
4.2  基于密度的次胜者受罚竞争算法 95
4.3  改进的密度次胜者受罚竞争学习算法 99
第5章  K-means学习算法 108
5.1  传统K-means聚类算法 108
5.2  密度RPCL优化的K-means聚类算法 111
5.3  基于样本分布密度的K-means聚类算法 118
5.4  最小方差优化初始聚类中心的K-means算法 125
5.5  全局K-means聚类算法 134
5.6  密度全局K-means聚类算法 136
5.7  粗糙K-means聚类算法 142
5.8  粒度K-means聚类算法 150
第6章  K-medoids学习算法 171
6.1  传统K-medoids聚类算法 171
6.2  快速K-medoids聚类算法 173
6.3  邻域K-medoids聚类算法 180
6.4  方差优化初始聚类中心的K-medoids算法 187
6.5  粒度K-medoids聚类算法 209
6.6  密度峰值优化初始聚类中心的K-medoids聚类算法 234
第7章  基于密度的无监督学习算法 259
7.1  DBSCAN算法 259
7.2  快速密度峰值发现聚类算法 262
7.3  K近邻优化的快速密度峰值发现聚类算法 265
7.4  模糊加权K近邻优化的密度峰值发现聚类算法 286
第8章  谱图聚类算法 302
8.1  最小生成树聚类算法 302
8.2  谱聚类算法 306
第9章  无监督学习方法的应用 318
9.1  基于无监督学习的基因选择 318
9.2  基于无监督学习的疾病诊断 338
9.3  无监督学习在生物医学大数据分析中的应用展望      404
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证