第一章 城市地质调查信息化概述
随着城市化进程的加速,城市人口急剧膨胀,城市范围快速扩张,城市地质环境问题日益突出,水资源短缺、水与土地污染、地面沉降、地表塌陷、滑坡、崩塌、泥石流等地质灾害频繁发生,成为影响城市社会经济可持续发展的重要因素。因此,深化城市地质工作,建立城市地质调查信息系统,对实施大数据战略,全面推进“数字城市”和“智慧城市”建设,提升城市规划、建设、管理与运行的水平,具有十分重要的意义。
1.1 城市地质调查的发展及现状
1.1.1 城市地质调查工作的基本内容
城市地质调查工作的基本内容,是在城市及其周围地区,或潜在城市化地区,综合研究各种地质要素对城市发展所提供的资源和所施加的约束,以及城市发展对各种地质要素所产生的反作用,为城市规划、建设和管理服务。具体地说,城市地质调查工作是研究城市的地质构造条件、工程地质条件、地基岩土稳定性,岩土体的出露和埋藏条件、城市土地合理利用、重大工程选址、地下空间可利用性等问题;研究水文地质结构和水文地质条件、地下水埋藏和分布规律、地下水的水质和水量、地下水的补给和排泄、地下水的可利用性和合理开发利用,以及城市供水水源地评价和保护问题;研究与城市有关的地震、活断层、滑坡、泥石流、洪水、地面沉降与塌陷,以及水土流失等地质灾害问题;研究城市建筑材料、地热、矿产资源开发利用的经济评价问题;研究城市中工业和生活垃圾的处理、地下水污染、土壤污染与环境保护问题,开展城市地质环境质量综合评价。
国际上的城市地质工作的开展,是与城市化进程相伴随的,大致开始于20世纪初,中间因第二次世界大战而陷于停顿。第二次世界大战以后,许多经济发达的国家根据城市建设的需要,纷纷开展系统的城市地质调查工作。初期的城市地质调查工作内容,主要是基础地质和工程地质填图,至20世纪60~70年代,工作内容扩大到水土污染调查评价,城市废弃物危害调查评价,以及各种相关地质资源的勘查评价。20世纪80年代以来,开始广泛应用信息技术,使各项专题研究水平和为社会服务的能力,得到迅速的提升。
美国地质调查局(USGS)在21世纪初把加强城市地质灾害研究,以及土壤污染问题的研究列为主要工作内容。他们借助GIS编制美国主要城市的多种灾害和污染状况数字化图件,还绘制出了描述城市土壤潜力与限制的“地质潜力图”。例如,在科罗拉多州格伦伍德斯普林斯市,开展了城市地质灾害评价项目。该市位于山区河谷地区,崩滑流地质灾害制约着城市的发展,城市规划部门委托科罗拉多州立大学,利用GIS进行地质灾害易损性和风险评价编图研究。他们按14种土地利用适宜性等级,对评价区进行了土地利用区划,圈出了未来城市发展的适宜地段和高风险区,在此基础上建立了“城市整体化决策支持系统”。
加拿大的城市地质工作已有100多年的历史。Henry Arm在1900年发表的“加拿大东部主要城市的地质”,被认为是加拿大城市地质的开创性成果。但是,加拿大系统开展城市地质工作是从20世纪50年代开始的。其目的是为市政规划和发展提供基础信息,主要成果是填制温哥华和蒙特利尔地区表层内容丰富的地质图。1971年,加拿大科学委员会出版的“加拿大地球科学”报告,高度强调了城市地质工作的重要意义。加拿大地质调查局在渥太华—赫尔地区启动了环境地质项目,出版了综合地质报告和一系列地质图。与此同时,加拿大地质调查局还得到资助,在全国27个主要城市开展了城市地质计划(WWSEP)。该计划收集了大量的城市地区的岩土数据(包括11万个钻孔资料),建立了城市岩土数据库,但由于财力等原因没有进一步维护和开发。目前,一半数据已经遗失,一半数据转换成PC格式,特别是在渥太华、温哥华、圣约翰和多伦多地区,岩土数据已经综合到GIS系统之中。加拿大近期的城市地质工作主要是解决海岸带软地基稳定性、隧道开挖、供水、废物处置、岸边侵蚀、冰碛物滑动、地震、洪水和火山喷发等地质问题。未来的挑战一是使市政管理者支持并参与城市地质工作和计划,二是开发出用户界面友好的城市地质信息系统,从而促进在城市地区将地质知识和信息直接应用于解决城市环境与岩土工程问题之中。
澳大利亚的城市地质调查工作,基本是与全国系统化区调工作同步进行的。在20世纪80年代,澳大利亚地学机构在遥感技术应用、地下水调查、核监测和地质灾害评估方面获得进展,并建立了地震监测活动。随后在20世纪90年代初期,制定了一项国家地球科学填图协议(national geoscience mapping accord),进一步将新的科学方法与新的空间信息技术结合起来,开始填制数字化的第二代澳大利亚陆地地质图。在此期间,为了减轻澳大利亚城市社区的地质灾害风险,提高城市社区安全,促进城市的可持续发展,于1996年实施了一个“城市项目”。该项目以昆士兰州凯恩斯市为首座试点研究的城市,开展了一系列地质灾害风险试点研究,研发了城市地质灾害填图与评价的科学方法与技术。经过几年的努力,研究人员完成了包括地震、滑坡、洪水和飓风等地质灾害风险与社区地质灾害脆弱性综合评价图。试点完成后,便将所取得的新方法、新技术成果向全国推广。至21世纪初,随着“玻璃地球”建设项目的设立和开展,澳大利亚的城市地质调查迅速采用了三维地质信息技术,迄今为止,基本完成了全国各大城市的地质调查。
德国也是最早开展城市地质调查工作的国家之一。20世纪90年代,随着工业现代化程度的不断提高,德国地质调查局也将工作重点由矿产资源勘查转向环境地质调查研究。所开展的研究工作包括以下几个方面:开展城市及其周围地区的环境地球化学调查、土壤污染评价;开展垃圾场污染的调查、评价及污染监控、治理;建立了城市行政机关、地质调查所的综合数据库,绘制出了描述城市土壤潜力与限制的“地质潜力图”,并获取广泛的其他地学知识,为城市规划建设和地下水利用服务。与此同时,德国还与泰国、印度尼西亚、尼泊尔等开展了城市环境地质调查与规划的技术合作。
荷兰也是开展城市地质调查工作最早的国家之一。从20世纪90年代初开始,荷兰地质调查机构与本国土壤调查所、应用地球科学研究所合作,进行了基于GIS平台的数字化区域工程地质和环境地质填图。其中,环境地质图的比例尺主要是1∶5万和1∶25万,是根据现有数据情况和用户需求进行生产的,其主题有水文地质系统、草地土壤稳定性、适宜于储存核废物的盐丘构造、适宜于地下建筑的深层黏土层性质、地热能的开采与储存、工业建材、受开挖影响的地貌脆弱性、地下水遭受硝酸盐污染的脆弱性、地下水水位波动、由于地下水开采易于发生土壤下沉的敏感性、建筑场地选址、城市扩展的区域地基深度等。在土地利用规划中,注重自然潜力和限制条件,以及土地复垦对地面沉降的影响。目前,已经有200个城镇进行了底土技术质量编图,并建立了基础地学信息数据库。
英国地质调查局很早就把资源、环境和灾害地质调查放在同等重要地位。特别是在20世纪末,针对21世纪的挑战和机遇,提出了加强与环境、自然资源和灾害相关的地质调查的21世纪新战略,并先后提出了2000~2005年、2005~2010年和2009~2014年科学战略规划。这些规划进一步使地质调查的内容和作用走向多样化,并促进了空间信息技术的广泛应用,加深了对环境及其过程的认识,同时革新了对新发现的解释和传播。例如,2005~2010年科学战略规划围绕8个主题(英国大陆的3D地球科学框架;地球环境信息;海岸带、大陆架及大陆边缘的3D特征;可持续水资源管理;可持续土地管理;能源和矿产资源的可持续生产和安全供应;岩石圈的物理、化学和生物灾害及其影响;监测全球变化过程)和5个交叉性问题(农村经济与土地利用和土地质量、气候变化、地球生命支持系统、能源和自然资源的安全性、国际发展)展开,而2009~2014年科学战略规划则在前一个战略规划的基础上,进一步把重点放在海岸带人口聚居地区的资源与环境地质调查,以及建立多尺度三维地层框架。显然,城市地质调查是其重点。其中,英国地质调查局启动的“伦敦计算机化地下与地表项目”(LOCUS),以2万多份钻孔描述资料为基础,建立城市地质数据库,形成了用于土地利用规划、土木工程建设以及解决地质环境问题的各种地质主题图件。
与此同时,欧洲其他国家如西班牙、比利时和俄罗斯,以及日本、新加坡、泰国、印度尼西亚、中国台湾和中国香港等东亚和东南亚的一些国家和地区,也开展了城市地质调查工作,完成了不少城市的1∶2.5万的地质填图工作,并开始了城市地质数据库建设。
所有这些研究,促成了一门新的地质学科——城市地质学的诞生。
在中国,城市地质调查起步较晚,直到近年来随着城市化进程加快,城市人口急剧膨胀,城市范围迅速扩大,城市地质资源、环境和地灾问题突出,城市地质调查才成为基础地质调查工作及其信息化的技术研发和应用的重点。
中国较为正式、系统的城市地质工作开始于20世纪80年代。最初于1983年,由北京市、地质矿产部和城乡建设环境保护部联合,开展了北京地区航空遥感方法调查。接着,在国家“七五”计划期间(1986~1990年),地质矿产部组织了上海、天津、丹东、大连、福州、广州、深圳、珠海、温州、宁波等21个沿海城市的城市环境地质调查。从21世纪初开始,在全国更大范围内开始大、中城市的1∶5万、1∶25万区域地质调查,其内容包括城市生态环境地球化学调查与城市工程地质、水文地质调查。另外地震、石油、化工、煤炭、建材、农业、城建、水利、航运、交通等部门,也从各自专业角度积累了大量的城市地质资料。随着地质信息科学技术的迅速兴起,中国地质调查局在2006~2010年完成了北京、上海、天津、南京、杭州和广州六大城市的三维地质环境综合调查试点,在相关高等学校的协助下,分别建立了这些城市的地质环境信息系统和三维地层框架模型。在总结这些新成果的基础上,中国地质调查局于2013年出版了《中国城市地质调查工作指南》(程光华等,2013a)和《中国城市地质调查技术方法》(程光华等,2013b)。
综上所述,开展城市地质环境、地灾和资源主题的综合地学填图工作,促进地学信息为城市规划、管理和运行服务,已经成为世界各国城市地质工作的要内容。基于三维地质信息平台,开展以主题式数据库为核心的城市地质信息系统建设,实现城市地质环境、地灾和资源评价与决策的信息化,成为城市地质工作的发展趋势。
1.1.2 城市地质调查信息化的概念与方法
城市地质调查的内容,主要涉及环境地质、工程地质、水文地质、土地利用和废弃物处理等多个领域。由于研究对象与研究内容存在显著差异,所采用的工作方法和工作手段有明显的差异。其中,环境地质调查常采用地质观察、物探、化探、遥感等方法;工程地质调查常采用地质观察、物探、钻探等方法;水文地质(含地热)调查常采用地质观察、物探、钻探等方法;土地利用调查常采用遥感、测绘等方法;废弃物处理场地调查常采用地质观察、遥感、物探和钻探等方法。在进行城市地质调查时,还需要搜集、整理并采用大量的前期物探、化探和钻探资料。除了地质观测之外,这种情况与传统的野外区域地质调查(填图)有明显差异。为了提高这些多源异构异质地质数据的采集、存储、管理、处理、建模和应用的效率和水平,需要采用三维地质信息科技,全面实现其信息化。
1. 地质调查信息化的概念
地质科学的发展、地质调查和其他地质勘查工作的深入开展,以及计算机和信息技术的应用,各个地区的地质资料和知识以空前的速度在积累着,使得已有地质图内容迅速变得陈旧。同时,社会的进步和需求的提高,又要求地质调查提供更多丰富的地质信息服务。因此,地质调查需要定期重复进行,地质图需要动态地填制和更新。
在一般情况下,1∶25万的地质图更新周期为20年左右,而1∶5万的地质图更新周期为10~15年。然而,由于传统的基础地质调查方式效率极低,严重地阻滞了地质图的更新速度。一些发达的西方大国的地质图更新率,通常每十年只有 10%左右。另外,最初的基础地质调查成果比较单一,通常只要求填绘出一张区域地质图。近年来,随着
展开