第1章 绪论1.1 研究的目的和意义1.2 无线传感器网络简介1.2.1 什么是无线传感器网络1.2.2 无线传感器网络的特点与挑战1.2.3 无线传感器网络领域的研究现状与热点问题1.3 无线传感网中感知数据的获取与计算技术简介1.3.1 无线传感网中感知数据获取与计算技术的研究现状1.3.2 无线传感网中感知数据的获取与计算技术所面临的新挑战1.4 本书研究的问题与成果第2章 静态传感器网络中基于均衡抽样的(ε。δ)一近似聚集算法2.1 引言2.2 问题定义2.3 数学基础2.3.1 聚集和的估计器2.3.2 平均值的估计器2.3.3 无重复计数值的估计器2.4 分布式均衡抽样算法2.4.1 样本容量的确定2.4.2 均衡抽样算法2.5 近似聚集算法2.6 样本信息维护算法2.6.1 ε和δ变化时样本数据信息维护算法2.6 2感知数据变化时样本信息维护算法2.7 实验结果2.7 1基于抽样技术算法的特有性能2.7.2 查询处理过程中的能量消耗28相关工作2.9 本章小节第3章 动态传感器网络中基于Betnoulli抽样的(ε,δ)-近似聚集算法3.1 引言3.2 预备知识3.2.1 问题定义3.2.2 Bemoulli抽样3.3 数学基础3.3.1 计数值及聚集和的估计器3.3.2 平均值估计器3.4 Bernoulli抽样算法3.4.1 抽样概率的确定3.4.2 Bernoulli抽样算法3.5 基于Bernoulli抽样的(ε,δ)一聚集算法3.5.1 Snapshot查询处理算法3.5.2 连续查询处理算法3.5.3 基于多抽样概率的(ε,δ)近似聚集算法3.6 实验结果3.6.1 大规模传感网中算法的性能3.6.2 中等规模传感网中算法的性能3.7 本章小结第4章 传感器网络中地理位置敏感的近似极值点查询算法4.1 引言4.2 问题定义4.3 贪心算法4.3.1 集中式贪心算法4.3.2 分布式贪心算法4.3.3 算法的复杂性4.4 基于区域划分的分布式算法4.4.1 算法的总体思想4.4.2 RrDk的计算方法4.4.3 算法的复杂性4.5 实验结果4.5.1 “Top-k”与“LAP(D,k)”的比较4.5.2 不同算法在计算“LAP-(D,k)”时的性能4.6 相关工作4.7 本章小结第5章 传感器网络中面向物理过程可重现的感知数据采集算法5.1 引言5.2 问题定义5.3 两种变频数据采集算法5.3.1 基于Hermit插值的变频数据采集算法5.3.2 基于三次样条插值的变频数据采集算法5.4 感知曲线聚集算法5.4.1 问题的定义5.4.2 感知曲线聚集算法5.4.3 聚集算法的优化策略——曲线合并算法5.5 实验结果5.5.1 变频数据采集算法的性能5.5.2 感知曲线聚集算法的性能5.6 相关工作5.7 本章小结第6章 结论参考文献索引
展开