随着数据挖掘和信息共享等数据库应用的出现与发展,如何保护隐私数据和防止敏感信息泄露成为当前面临的重大挑战。作为数据挖掘与信息共享应用中的重要环节,数据发布中的隐私保护已成为当前的研究热点。隐私保护数据发布自提出以来,已吸引许多学者、数据管理人员以及工程科技人员对其展开研究,并取得大量的研究成果。本书主要阐述数据共享发布中的两大主要隐私保护模型及其关键算法。
全书分为2篇,第1篇阐述匿名隐私保护数据发布,由1-9章组成,主要内容涉及:匿名隐私保护相关知识、k-匿名组规模的上界讨论、关系型数据发布及其扩展背景(数据增量更新和多敏感属性数据发布)下的匿名隐私保护、非关系型数据(包括事务型数据、社会网络数据和轨迹数据)发布中的匿名隐私保护模型及算法、面向LBS应用的位置隐私保护等;第2篇阐述差分隐私保护数据发布,由10-19章组成,主要内容涉及:差分隐私基础知识、基于k叉平均树的差分隐私数据发布、面向任意区间树结构及其扩展背景(考虑区间查询分布和异方差加噪)下的差分隐私直方图发布、面向其他应用背景(流/连续数据发布、稀疏/多维数据发布)的差分隐私保护、差分隐私下的频繁模式挖掘等。
本书主要面向计算机科学、网络空间安全、管理科学与工程等相关学科专业高年级本科生、研究生以及广大研究数据安全隐私保护的科技工作者。
展开