《耀世数学明珠/中华复兴之光 伟大科教成就》:
一位农妇在河边洗碗。她的邻居闲来无事,就走过来问:“你洗这么多碗,家里来了多少客人?”农妇笑了笑,答道:“客人每2位合用一只饭碗,每3位合用一只汤碗,每4位合用一只菜碗,共用65只碗。”然后她又接着问邻居,“你算算看,我家里究竟来了多少位客人?”这位邻居也很聪明,很快就算了出来。
这是《孙子算经》中的一道著名的数学题“河上荡杯”。荡杯在这里是洗碗的意思。
很明显,这里要求解的是65个碗共有多少人的问题。其中有能了解客数的信息是2人共碗饭,3人共汤碗,4人共菜碗。通过这几个数值,很自然就能解决客数问题。
《孙子算经》有3卷,常被误认为春秋军事家孙武所著,实际上是魏晋南北朝时期前后的作品,作者不详。这是一部数学入门读物,通过许多有趣的题目,给出了筹算记数制度及乘除法则等预备知识。
“河上荡杯”,包含了当时人们在数学领域取得的成果。而“鸡兔同笼”这个题目,同样展示了当时的研究成果。
鸡兔同笼的题意是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?这道题其实有多种解法。
其中之一:如果先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。同理,也可以假设全是兔子。
《孙子算经》还有许多有趣的问题,比如“物不知数”等,在民间广为流传,同时,也向人们普及了数学知识。
其实,魏晋时期特殊的历史背景,不仅激发了人们研究数学的兴趣,普及了数学知识,也丰富了当时的理论构建,使我国古代数学理论有了较大的发展。
在当时,思想界开始兴起“清谈”之风,出现了战国时期“百家争鸣”以来所未有过的生动局面。与此相适应,数学家重视理论研究,力图把从先秦到两汉积累起来的数学知识建立在必然的基础之上。
而刘徽和他的《九章算术注》,则是这个时代造就的最伟大的数学家和最杰出的数学著作。刘徽生活在“清谈”之风兴起而尚未流入清谈的魏晋之交,受思想界“析理”的影响,对《九章算术》中的各种算法进行总结分析,认为数学像一株枝条虽分而同本干的大树,发自一端,形成了一个完整的理论体系。
刘徽的《九章算术注》作于263年,原10卷。前9卷全面论证了《九章算术》的公式、解法,发展了出入相补原理、截面积原理、齐同原理和率的概念,首创了求圆周率的正确方法,指出并纠正了《九章算术》的某些不精确之处或错误的公式,探索出解决球体积的正确途径,创造了解线性方程组的互乘相消法与方程新术。
用十进分数逼近无理根的近似值等,使用了大量类比、归纳推理及演绎推理,并且以后者为主。
第十卷原名“重差”,为刘徽自撰自注,发展完善了重差理论。此卷后来单行,因第一问为测望海岛的高远,故名称《海岛算经》。
我国古典数学理论体系的建立,除了刘徽及其《九章算术注》不世之功和《孙子算经》的贡献外,魏晋南北朝时期的《张丘建算经》、《缀术》也丰富了这一时期的理论创建。
南北朝时期数学家张丘建著的《张丘建算经》3卷,成书于北魏时期。此书补充了等差级数的若干公式,其百鸡问题导致三元不定方程组,其重要之处在于开创“一问多答”的先例,这是过去我国古算书中所没有的。
百鸡问题的大意是公鸡每只值5文钱,母鸡每只值3文钱,而3只小鸡值1文钱。用100文钱买100只鸡,问这100只鸡中,公鸡、母鸡和小鸡各多少只?这个问题流传很广,解法很多,但从现代数学观点来看,实际上是一个求不定方程整数解的问题。
百鸡问题还有多种表达形式,如“百僧吃百馍”和“百钱买百禽”等。宋代数学家杨辉算书内有类似问题。此外,中古时近东各国也有相仿问题流传,而且与《张丘建算经》的题目几乎全同。可见其对后世的影响。与上述几位古典数学理论构建者相比,祖冲之则重视数学思维和数学推理,他将传统数学大大向前推进了一步。
祖冲之写的《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本。
祖冲之将圆周率的真值精确到3.1415926,是当时世界上最先进的成就。他还和儿子祖咂一起,利用“牟合方盖”圆满地解决了球体积的计算问题,得到了正确的球体积公式。
祖冲之还在462年编订《大明历》,使用岁差,改革闰制。他反对谶纬迷信,不虚推古人,用数学方法比较准确地推算出相关的数值,坚持了实事求是的科学精神。
……
展开