《面向设计师的编程设计知识系统PADKS:ArcGIS下的Python编程》对于ArcGIS 下Python 脚本使用方法的阐述是从Python 语言本身和基于ArcGIS的Python 两个方面同时着手,因此在阅读本书时不需要预先具备Python 基础知识。本书包括七个部分,Python 与ArcGIS,ArcGIS 下的地理数据与Python 数据结构,Python 的基本语句与使用Python 访问地理数据,创建函数与使用Python 处理栅格数据,创建类与网络分析,异常与错误,以及程序的魅力。主要阐述的逻辑线存在并行的两条线,一个是针对Python 的,从对于Python 介绍、数据结构、基本语句到创建函数、创建类和异常;另一个是针对ArcGIS 下的Python ,从ArcPy 站点包、访问以及管理地理信息数据的方法、处理要素类、处理栅格数据到网络分析和与地理处理模型的结合方法。两条线同时推进阐述,互相支持印证,并结合实际解决问题的应用方法,例如如何转化KML 文件和.dwg 格式文件并增加字段数据,以及适宜性分析栅格计算重分类的方法和寻找最近设施点的网络分析,遗传算法应用等。
最后一部分则通过具体的案例来阐述应用ArcGIS下Python编程规划的方法,初步包括三个课题的探讨:
“课题探讨_A_ 自然村落选址因子权重评定的遗传算法”,村落选址受制于山水,如何在复杂的地形中谋得栖身之所,避免自然灾害的侵扰并具有舒适宜人的小气候是人类不断探索的课题。根据假定既有村落选址的特点反推权重设置具有一定的合理性,并根据反推的权重应用于影响因子计算新的地块获取选址。在这个过程中,使用优化算法中的遗传算法求解;
“课题探讨_B_ 基于景观感知敏感度的生态旅游地观光线路自动选址”,根据《基于景观感知敏感度的生态旅游地观光线路自动选址》的研究,将计算模型程序化,不仅提升模型计算的效率,更有利于不断修正研究过程中出现的问题以及加入更多不同类型影响因子后,进行综合性评价分析,并为类似的研究提供基础性程序片断;
“课题探讨_C_ 解读蚁群算法与TSP 问题”,蚁群算法(Ant Colony Optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。本案例将蚁群算法在ArcGIS的Python脚本中实现。
展开