第一章 多体问题
1-1 问题的性质
1-2 全同粒子系
1-3 多电子波函数
1.多粒子系Hamilton(汉密尔顿)量及Schrodinger方程式
2.Pauli不相容原理与多电子波函数
3.电子基态与激发态波函数
4.精确波函数与组态作用
1-4 多电子系矩阵元的计算
1.矩阵元(K|0|L)的计算
2.矩阵元计算的一般规则
3.矩阵元规则的导出
4.自旋轨道向空间轨道的变换
5.自旋适合的组态(Spin-adapted Con:figurations)
1-5 Hartree-Fock近似
1.泛函变分
2.单行列式函数能量的极小化
3.正则Hartree-Fock方程式
(The canonicad Hartree-Fock eq.)
4.Hartree-Fock方程及其解的意义
1-6 Roothaan方程式
1.闭壳层Hartree-Fock:限制的自旋轨道
2.基函数的引入与Roothaan方程式
3.Roothaan方程式的SCF法求解
4.期望值与布居分析
1-7 非限制开壳层Hartree-Fock方程
1.开壳层Hartree-Fock与非限制自旋轨道
2.基函数的导入与Pople-Neslc)et方程式
3.非限制的SCF方程式的解
第二章 二次量子化方法——基本概念与原理
2-1 二次量子化的重要性
2-2 产生算符与湮灭算符
1.真空态
2.产生算符
3.粒子数表象
4.湮灭算符
5.产生算符与湮灭算符问的交换关系
6.单粒子态的正交性规则——共轭关系
7.产生算符与湮灭算符性质的总括
2-3 粒子数算符
2-4 量子力学算符的二次量子化表示
1.概述
2.单电子算符
3.双电子算符
4.Boiln一Oppenheimer近似Hamilton量的
二次量子化形式
5.二次量子化算符的Hermite性质
第三章 二次量子化方法的应用(I)
3-1 矩阵元的求值
1.基本矩阵元
2.Fermi真空概念
3-2 若干二次量子化例子
1.概述
2.二行列式的重迭
3.Htickel能量公式
4.两个电子的相互作用
3-3 密度矩阵
1.一阶密度矩阵
2.二阶密度矩阵
3.Hartree-Fock能量公式
3-4 与“左矢”(Bra)和“右矢”(Ket)间的关系
3-5 使用空间轨道
3-6 一些模型Hamilton量的二次量子化表示形式
1.鹨坏缱親amilton量
2.粒子一空穴对称性
3-7 全价电子体系
1.全价电子Hamilton量
2.Hartree-Fock Hamilton量
3.BrilIouin定理
第四章 二次量子化方法的应用(Ⅱ)
4-1 多体微扰理论
4-2 非正交轨道的二次量子化
1.反交换规则
2.非正交归一表象中的}tamilton量
3.扩展的Huckel理论
4-3 二次量子化与Hellmann-Feynman定理
1.概述
2.正交基集的能量变分
3.能量变分——非正交基集
4.SCF梯度公式
4-4 分子间相互作用
1.相互作用算符
2.对称性适合的微扰理论
4-5 准粒子变换
1.单粒子变换
2.双粒子变换
3.定域化学键理论
4-6 几个有关课题
1.自旋算符与自旋Hamilton量
2.酉群方法(Unitary Group Approach)
第五章 Green函数法基础
5-1 绪 言
5-2 Green函数举例
1.微分方程式及其G.F.
2.动力学方程式及其G.F.
3.本征值方程式及其G.F.
5-3 单粒子系Green函数
5-4 单粒子多体Green函数
1.概述
2.自能(Self-Energy)
3.Dyson方程式的解
4.对H2与HeH+的应用
5-5 Green函数法与微扰理论
1.概述
2.单激发态|N-1豶/ca)
3.双激发态|N-1豶s/cab)
4.双激发态|N-1豤r/cab>
第六章 Green函数法与量子化学
6-1 引 言
6-2 Hucekel模型中的Green匪
1.AB型双原子分子
2.链状n原子分子
3.环状n原子分子
6-3 G.F.的三角函数表示式
1.链状分子的G.F.
2.环状分子的G.F.
3.电荷密度、键级与总能
6-4 化学稳定性
1.微扰与化学稳定性
2.10碳环分子
3.14碳环分子
6-5 芳香性
1.M=4m的情形
2.M=4m+2的情形
3.M=4m+1的情形
4.M=4m+3的情形
6-6 化学反应活性
1.环合与开环反应
2.环加成反应
第七章 再谈Green函数
7-1 尾 声
7-2 Green函数与Feynman图
1.分子轨道法与Feynman图
2.Green函数法与Feynman图
7-3 Green函数与路径积分
附录
A.波场的量子化
B.固体能带论中的Green函数法
主要参考书目
展开