国内资深Hadoop技术专家实践经验结晶,完全从企业实际生产环境和需求出发,旨在帮助企业真正解决大数据的落地问题
系统介绍HBase的功能使用、框架设计、基本原理和高级特性;详细讲解使用HBase设计大型数据应用系统的实践方法和技巧;深刻总结系统运维、监控和性能调优的实践
《HBase企业应用开发实战》强调HBase在企业的实际应用,立足于企业的实际生产环境,旨在帮助企业切实解决大数据技术如何落地的问题。三位作者都是奋战在大数据技术一线的实践派专家,本书是他们实践经验的结晶。
《HBase企业应用开发实战》内容在三个维度上具有重要特色:功能维度,从HBase的安装配置、参数设置,到数据模型、表结构设计、客户端使用、高级特性,本书做了系统且详尽的介绍;实战维度,不仅通过3个典型的应用案例详细讲解了如何使用HBase设计大型的数据应用系统,而且还结合实际生产系统讲解了HBase的集群运维、监控和性能调优;理论维度,则深入分析了HBase、框架设计、模式设计和基本原理。可谓是理论与实践完美结合,深度与广度兼备!
第一部分Part1
基础篇
第1章认识HBase
第2章HBase安装与配置
第3章数据模型
第4章HBase表结构设计
第5章HBase客户端
Chapter1第1章
认识HBase
本章将介绍大数据背景和HBase的基本概念,从大数据引申到NoSQL,并阐述HBase出现的契机。随后,将介绍HBase的概念、发展历史、发行版本和基本特性。其中,HBase的核心功能模块将作为一个小节单独重点介绍,最后通过介绍HBase的使用场景和经典案例,让读者朋友能够清晰地了解HBase可以做什么。
作为NoSQL家庭的一员,HBase的出现弥补了Hadoop只能离线批处理的不足,同时能够存储小文件,提供海量数据的随机检索,并保证一定的性能。而这些特性也完善了整个Hadoop生态系统,泛化其大数据的处理能力,结合其高性能、稳定、扩展性好的特行,给使用大数据的企业带来了福音。
因为本章是全书的开篇,唯有简明扼要地介绍才能帮助正在学习和想要学习HBase的读者,所以本章将提纲掣领地介绍HBase的相关知识,重点介绍HBase是什么以及HBase能做什么两部分。
1.1理解大数据背景
经美国权威机构IDC调查发现,现如今的公司正在以前所未有的速度和丰富的类型产生数据,并且也有能力存储这些数据,但是,如何关联这两方面以便产生最大的商业价值,是所有公司共同面临的挑战。这个问题非常复杂:虽然业务人员在技能提升和专业工具的帮助下,越来越了解数据,但由于数据的增长速度越来越快,积累量级越来越大,公司可以利用的数据比例正在迅速下降。
1.1.1什么是大数据
Gartner认为与过去相关概念相比,大数据强调3V特征,即Volume(量级)、Varity(种类)和Velocity(速度),如图1-1所示。
图1-1大数据三大特性
如今存储的数据量正在急剧增长,2000年全球存储了EB级别的数据,预计到2020年,该值将变为ZB级别。仅Twitter每天就会生成超过10TB的数据,Facebook的数据为几十TB,一些特殊的企业在每小时就会产生TB级别的数据。
上面这些企业是一些典型的案例,其实我们生活的方方面面都会形成很多“轨迹”。例如,打开手机会生成一个事件;乘坐公共交通刷卡,这是一个事件;检票登机、打卡上班、AppStore上购买应用、更换电视频道、使用高速路电子收费系统等。每一项操作都会生成数据,并且该数据的量级与参与的人数相关,全球60亿人口,如果仅仅1/10的人参与进来,那么这个数据量级就已经非常惊人。就在10年前IT界超过1TB的数据仓库屈指可数,而现在则是“举不胜举”。
随着传感器、智能设备以及社交协作技术的激增,企业中的数据也变得更加复杂,因为它不仅包含传统的关系型数据,还包含来自网页、Web日志文件、社交媒体论坛、电子邮件、文档、传感器数据等原始、半结构化和非结构化数据。
传统系统可能很难存储、分析这些数据的内容,更不要说挖掘有价值的信息。因为传统的数据库、数据仓库、联机事务处理等技术并不适合处理这些数据。尽管一些公司正在朝大数据方向大力发展,但总体而言,大部分公司只是刚开始理解大数据。当回首整个数据库发展的历程会发现,人们将大部分时间都花在仅20%的数据上:这些数据格式整齐且符合严格模式的关系类型。但事实是,全球80%的数据是非结构化的或者半结构化的。
视频和图片不能轻松或高效地存储在关系型数据库中,某些事件信息可能动态地更改(如气象),它们不太适合严格的模式。要利用大数据,企业必须能够分析所有类型的数据,包括关系和非关系数据:文本、传感器数据、音频和视频等。
有效处理大数据需要在数据变化的过程中对它的数量和种类进行分析,而不只是在“静止”状态进行分析。业界定义这种情况为从单纯批量计算模式到实时动态计算模式的内涵式转变。内涵式在这里也比较容易理解,即结构优化、质量提高,是一种实现实质性的跨越式的进程。大数据平台允许用户将所有数据存储为其原生的业务对象格式,通过可用组件上的大规模并行计算实现价值,不仅仅是批量处理和离线分析,同时支持实时查询和处理等特征,甚至要求响应时间在毫秒级别,并且可承受大规模的并发访问,这些都是“速度”特征的范畴。
……
前 言
第一部分 基础篇
第1章 认识HBase 2
1.1 理解大数据背景 2
1.1.1 什么是大数据 3
1.1.2 为何大数据至关重要 4
1.1.3 NoSQL在大数据中扮演的角色 4
1.2 HBase是什么 6
1.2.1 HBase的发展历史 6
1.2.2 HBase的发行版本 7
1.2.3 HBase的特性 9
1.3 HBase与Hadoop的关系 10
1.4 HBase的核心功能模块 12
1.4.1 客户端Client 12
1.4.2 协调服务组件ZooKeeper 13
1.4.3 主节点HMaster 13
1.4.4 Region节点HRegionServer 13
1.5 HBase的使用场景和经典案例 14
1.5.1 搜索引擎应用 15
1.5.2 增量数据存储 15
1.5.3 用户内容服务 17
1.5.4 实时消息系统构建 18
1.6 本章小结 18
第2章 HBase安装与配置 19
2.1 先决条件 19
2.2 HBase运行模式 23
2.2.1 单机模式 23
2.2.2 分布式模式 24
2.3 HBase的Web UI 31
2.4 HBase Shell工具使用 31
2.5 停止HBase集群 33
2.6 本章小结 33
第3章 数据模型 34
3.1 两类数据模型 34
3.1.1 逻辑模型 35
3.1.2 物理模型 35
3.2 数据模型的重要概念 36
3.2.1 表 36
3.2.2 行键 37
3.2.3 列族 38
3.2.4 单元格 38
3.3 数据模型的操作 38
3.3.1 读Get 39
3.3.2 写Put 39
3.3.3 扫描Scan 39
3.3.4 删除Delete 40
3.4 数据模型的特殊属性 40
3.4.1 版本 40
3.4.2 排序 42
3.4.3 列的元数据 42
3.4.4 连接查询 43
3.4.5 计数器 43
3.4.6 原子操作 43
3.4.7 事务特性ACID 43
3.4.8 行锁 45
3.4.9 自动分区 45
3.5 CAP原理与最终一致性 46
3.6 本章小结 47
第4章 HBase表结构设计 48
4.1 模式创建 48
4.2 Rowkey设计 49
4.3 列族定义 51
4.3.1 可配置的数据块大小 51
4.3.2 数据块缓存 52
4.3.3 布隆过滤器 52
4.3.4 数据压缩 53
4.3.5 单元时间版本 53
4.3.6 生存时间 54
4.4 模式设计实例 54
4.4.1 实例1:动物分类 54
4.4.2 实例2:店铺与商品 56
4.4.3 实例3:网上商城用户消费记录 57
4.4.4 实例4:微博用户与粉丝 58
4.5 本章小结 60
第5章 HBase客户端 61
5.1 精通原生Java客户端 61
5.1.1 客户端配置 62
5.1.2 创建表 69
5.1.3 删除表 70
5.1.4 插入数据 70
5.1.5 查询数据 72
5.1.6 删除数据 76
5.1.7 过滤查询 77
5.2 使用HBase Shell工具操作HBase 79
5.2.1 命令分类 79
5.2.2 常规命令 80
5.2.3 DDL命令 81
5.2.4 DML命令 82
5.2.5 工具命令Tools 86
5.2.6 复制命令 87
5.2.7 安全命令 87
5.3 使用Thrift客户端访问HBase 88
5.3.1 Thrift与Thrift2区别 88
5.3.2 安装与部署Thrift2 89
5.3.3 Python使用案例 93
5.4 通过REST客户端访问HBase 95
5.4.1 启动服务 95
5.4.2 使用REST访问example表 96
5.5 使用MapReduce批量操作HBase 97
5.5.1 三种访问模式 98
5.5.2 实现MapReduce API 98
5.5.3 HBase作为输入源示例 99
5.5.4 HBase作为输出源示例 101
5.5.5 HBase作为共享源示例 103
5.6 通过Web UI工具查看HBase状态 106
5.6.1 Master状态界面 106
5.6.2 RegionServer状态界面 107
5.6.3 ZooKeeper统计信息页面 109
5.7 其他客户端 110
5.8 本章小结 110
第二部分 实战篇
第6章 整合SQL引擎层 114
6.1 NoSQL背景知识 114
6.1.1 什么是NoSQL 114
6.1.2 将SQL整合到HBase的原因 115
6.1.3 基于HBase的SQL引擎实现 116
6.2 Hive整合HBase的实现 119
6.2.1 认识Hive 119
6.2.2 Hive整合HBase的环境准备 122
6.2.3 Linux环境下重新编译Hive 123
6.2.4 Hive参数配置 125
6.2.5 启动Hive 127
6.2.6 Hive与HBase整合后的框架如何使用 127
6.2.7 HBase到Hive的字段映射 133
6.2.8 多列与Hive Map类型 134
6.3 查询引擎Phoenix 137
6.3.1 认识Phoenix 138
6.3.2 Phoenix安装环境准备 141
6.3.3 Phoenix安装部署 142
6.3.4 Phoenix源码编译 143
6.3.5 Phoenix中SQLLine的快速使用 149
6.3.6 使用JDBC访问Phoenix 153
6.4 对象映射框架Kundera 155
6.4.1 认识Kundera 155
6.4.2 Kundera的客户端API快速使用 158
6.4.3 Kundera模块介绍 161
6.4.4 Kundera的REST访问方式 162
6.5 分布式SQL引擎Lealone 165
6.5.1 认识Lealone 165
6.5.2 Lealone的安装部署 166
6.5.3 通过JDBC访问Lealone 168
6.5.4 通过Python访问Lealone 169
6.5.5 Lealone特有的建表语法 170
6.6 本章小结 171
第7章 构建音乐站用户属性库 173
7.1 案例背景 173
7.1.1 音乐站 173
7.1.2 需求概述 175
7.1.3 需求范围和系统边界 175
7.1.4 需求详述 176
7.1.5 名词解释 180
7.2 概要设计 181
7.2.1 设计目标 181
7.2.2 数据规模假设 181
7.2.3 功能指标 182
7.2.4 系统流程 182
7.3 表结构设计 183
7.3.1 功能抽象 183
7.3.2 逻辑结构 184
7.3.3 Rowkey设计 188
7.3.4 列族设计 188
7.3.5 版本定义 188
7.3.6 优化属性定义 188
7.4 数据加载 189
7.4.1 加载流程 189
7.4.2 Mapper类 190
7.4.3 Main类 192
7.4.4 运行 193
7.5 数据检索 193
7.5.1 HBaseTable 193
7.5.2 HBaseAdmin 193
7.5.3 几种检索类型 195
7.6 后台查询 198
7.6.1 二级索引实现 198
7.6.2 后台查询系统 205
7.7 本章小结 206
第8章 构建广告实时计算系统 208
8.1 理解广告数据和流处理框架 208
8.1.1 网络广告的几大特性 209
8.1.2 网络广告的数据类型 210
8.1.3 流处理框架 211
8.1.4 背景与需求描述 217
8.2 概要设计 218
8.2.1 设计目标 219
8.2.2 主要功能 219
8.2.3 系统架构 219
8.3 详细设计 221
8.3.1 表结构设计 221
8.3.2 功能模块设计 222
8.4 核心功能实现 223
8.4.1 规划集群环境部署 223
8.4.2 安装ZooKeeper集群 225
8.4.3 安装Kafka分布式集群 228
8.4.4 实现Kafka生产者 231
8.4.5 安装Storm分布式集群 233
8.4.6 查看集群节点部署情况 240
8.4.7 基于Storm-kafka中间件实现计算逻辑 240
8.4.8 如何使用HBase中统计数据 251
8.5 本章小结 252
第三部分 高级篇
第9章 核心概念 254
9.1 核心结构 254
9.1.1 B+树 255
9.1.2 LSM树 255
9.1.3 两种结构本质区别 257
9.2 底层持久化 258
9.2.1 存储基本架构 258
9.2.2 HDFS文件 259
9.2.3 Region切分 264
9.2.4 合并 265
9.2.5 HFile格式 266
9.2.6 KeyValue格式 269
9.3 预写日志 270
9.3.1 概要流程 270
9.3.2 相关Java类 271
9.3.3 日志回放 274
9.3.4 日志一致性 275
9.4 写入流程 276
9.4.1 客户端 276
9.4.2 服务器端 281
9.5 查询流程 286
9.5.1 两种查询操作 286
9.5.2 客户端 286
9.5.3 服务器端 287
9.6 数据备份 291
9.6.1 备份机制架构 292
9.6.2 故障恢复 292
9.7 数据压缩 294
9.7.1 支持的压缩算法 295
9.7.2 使用配置 295
9.8 本章小结 296
第10章 HBase高级特性 297
10.1 过滤器 297
10.1.1 过滤器的两类参数 297
10.1.2 比较器 298
10.1.3 列值过滤器 300
10.1.4 键值元数据过滤器 300
10.1.5 行键过滤器 303
10.1.6 功能过滤器 303
10.1.7 Thrift使用过滤器 304
10.1.8 过滤器总结 309
10.2 计数器 310
10.2.1 使用Shell操作计数器 310
10.2.2 基于单列的计数器 312
10.2.3 多列计数器 313
10.3 协处理器 314
10.3.1 认识协处理器 315
10.3.2 观察者Observer 316
10.3.3 终端EndPoint 318
10.3.4 协处理器部署 320
10.4 Schema设计要点 323
10.4.1 行键设计 323
10.4.2 列族设计 325
10.5 二级索引 325
10.5.1 Client-managed方式 326
10.5.2 ITHBase实现 326
10.5.3 IHBase实现 329
10.5.4 Coprocessor方式 329
10.5.5 MapReduce两种方式 330
10.6 布隆过滤器 330
10.6.1 基本概念 331
10.6.2 配置布隆过滤器 332
10.6.3 使用布隆过滤器 333
10.7 负载均衡 333
10.7.1 全局计划 334
10.7.2 随机分配计划 337
10.7.3 批量启动分配计划 337
10.7.4 通过Shell控制负载均衡 338
10.8 批量加载 338
10.8.1 准备数据:importtsv 338
10.8.2 加载数据:completebulkload 340
10.9 本章小结 340
第11章 集群运维管理 341
11.1 HBase常用工具 341
11.1.1 文件检测修复工具hbck 342
11.1.2 文件查看工具hfile 346
11.1.3 WAL日志查看工具hlog 348
11.1.4 压缩测试工具CompressionTest 349
11.1.5 数据迁移工具CopyTable 350
11.1.6 导出工具export 351
11.1.7 导入工具Import 351
11.1.8 日志回放工具WALPlayer 351
11.1.9 行数统计工具RowCounter 352
11.2 Region和RegionServer管理 353
11.2.1 大合并工具major_compact 353
11.2.2 Region合并工具Merge 354
11.2.3 下线节点 354
11.2.4 滚动重启 355
11.3 性能指标Metrics 356
11.3.1 Master Metrics 357
11.3.2 RegionServer Metrics 357
11.3.3 RPC Metrics 358
11.3.4 JVM Metrics 359
11.3.5 集群属性Metrics 360
11.4 监控系统Ganglia 360
11.4.1 HBase监控指标 360
11.4.2 安装、部署和使用Ganglia 361
11.5 HBase管理扩展JMX 366
11.5.1 如何使用JMX 366
11.5.2 基于JMX的监控工具Ella 368
11.6 报警工具Nagios 371
11.7 故障处理 376
11.7.1 问题咨询渠道 377
11.7.2 常用日志信息 377
11.7.3 常用故障调试工具 379
11.7.4 客户端故障排查 384
11.7.5 MapReduce故障排查 386
11.7.6 网络故障排查 387
11.7.7 RegionServer相关问题解决 387
11.7.8 Master相关问题解决 391
11.7.9 ZooKeeper相关问题解决 392
11.8 集群备份 392
11.8.1 冷备份 393
11.8.2 热备份之Replication 393
11.8.3 热备份之CopyTable 393
11.8.4 热备份之Export 393
11.9 本章小结 393