《数据仓库与数据挖掘实践》系统地介绍了数据仓库和数据挖掘技术,全本由两部分组成,第1章到第3章介绍数据仓库的基本概念和相关技术,第4章到第11章介绍数据挖掘的基本概念和各种算法,包括数据仓库构建、OLAP技术、分类方法、聚类方法、关联分析、序列模式挖掘方法、回归和时序分析、粗糙集理论、文本挖掘、Web挖掘和空间数据挖掘方法等。
《数据仓库与数据挖掘实践》既注重原理,又注重实践,配有大量图表、示例和练习题,内容丰富,概念讲解清楚,表达严谨,逻辑性强,语言精练,可读性好。
《数据仓库与数据挖掘实践》既便于教师课堂讲授,又便于自学者阅读。适合作为高等院校高年级学生和研究生“数据仓库和数据挖掘”或“数据挖掘算法”课程的教材。
展开