搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
混凝土结构试验与理论研究
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787030354471
  • 作      者:
    易伟建编著
  • 出 版 社 :
    科学出版社
  • 出版日期:
    2012
收藏
内容介绍
  《混凝土结构试验与理论研究》是作者多年来教学和科研心得的总结。书中,作者将试验和理论结合,探讨了混凝土结构试验问题及与之相关的原理。全书共八章,内容包括绪论、混凝土本构关系与试验、钢筋混凝土构件的正截面承载力、钢筋混凝土结构及构件的受剪承载力、钢筋混凝土梁受剪破坏的尺寸效应、受剪承载力理论模型与试验、延性与约束混凝土、补遗。
  《混凝土结构试验与理论研究》适合从事土木工程的研究员、教授、研究生阅读参考,也可作为相关专业本科生的教材使用。
展开
精彩书摘
  《混凝土结构试验与理论研究》:
  试验过程中,也没有对试件端部的摩擦约束作出定量的评估。图2.21中,不同强度的混凝土,其下降段的陡峭程度与端部减摩方式的相对关系不同,对此,Kotsovos没有给出令人满意的解释。此外,混凝土力学性能的随机性没有在试验报告中体现,图2.21和图2.22所示的曲线在多大程度上可以重复也没有说明。因此,Kotsovos认为混凝土的应力超过峰值应力后,其承载能力完全丧失的观点没有被广泛接受。但Kotsovos的试验的确为学术界提出了一个问题:混凝土的力学性能随试验环境而变化,即使简单得像混凝土单轴受压这样的试验,应力—应变曲线的下降段仍然不能完全确定。 
  图2.21还提出了一个理论上看似令人困惑的问题:当试件端部的侧向变形受到约束时,其应力—应变曲线的下降段十分平缓;当试件端部的摩擦约束被充分消除后,下降段变得十分陡峭。原因何在?假设将试件沿其高度分为三段,靠近试件上、下端部的混凝土受到端部摩擦约束,应产生较小的变形,试件的中间段产生较大的变形。因此,当试件端部受到约束时,试件的平均压缩变形应该小于试件中间段的压缩变形。当试件端部的摩擦约束被消除后,三段的性能应该趋于一致,具有相同的下降段特性,其平均变形应该接近端部受约束试件的中间段的压缩变形。因此,消除端部摩擦约束后,试件上、下压板之间的相对位移(对应图2.21中的横坐标)应该增加,因而下降段应该更加平缓。图2.21的结果与这一推断正好相反,从轴向应力—应变曲线本身很难解释这个现象。另一方面,按照混凝土受压破坏的微柱模型,受压混凝土应力—应变曲线的下降段伴随微小柱体的相继失稳、压溃,消除端部约束后,各微柱高度增加且受力更加均匀,微柱相继破坏过程缩短,导致更陡峭的下降段。也许我们需要更多测试数据,包括沿试件高度的轴向应变和环向应变,以及试件损伤特征与实测应变的关系等,从破坏机理的角度进行深入的探究。幸运的是,实际工程对混凝土受压应力—应变曲线没有更多理论层面的要求,也不会有哪个国家的混凝土结构设计规范因此而作出修订。
  ……
展开
目录

前言

第1章 绪论
1.1 混凝土结构的工程特点
1.2 混凝土结构的发展
1.2.1 高性能材料
1.2.2 灾害对混凝土结构的冲击
1.2.3 混凝土结构的计算分析与结构试验
1.2.4 混凝土结构的耐久性
1.3 结构工程师对混凝土结构的认识
1.3.1 钢筋混凝土力学
1.3.2 结构试验
1.3.3 设计规范
参考文献

第2章 混凝土本构关系与试验
2.1 混凝土单轴受压应力-应变曲线
2.1.1 混凝土受压的基本特点
2.1.2 单轴受压混凝土的应力-应变曲线
2.1.3 结构设计和分析中的应力-应变曲线
2.2 刚性试验机试验技术
2.2.1 刚性试验机原理
2.2.2 刚性辅助元件
2.2.3 电液伺服试验机
2.3 混凝土应力-应变曲线试验技术
2.3.1 边界条件的影响
2.3.2 RILEM的联合对比试验
2.3.3 应变测试技术
2.3.4 尺寸效应的影响
2.3.5 加载速率的影响
2.4 双轴和多轴应力状态
2.4.1 采用钢刷承压板进行混凝土板双轴应力状态试验
2.4.2 混凝止的三轴强度
2.4.3 混凝土的抗剪试验
2.5 小结
2.5.1 关于混凝土受拉的性能
2.5.2 钢筋与混凝土的黏结
2.5.3 小结与评述
参考文献

第3章 钢筋混凝土构件的正截面承载力
3.1 钢筋混凝土简支梁弯曲破坏的主要试验结果
3.1.1 简支梁的少筋破坏
3.1.2 简支梁的超筋破坏
3.1.3 简支梁的适筋破坏
3.2 钢筋混凝土受弯构件承载力计算方法
3.2.1 基本假设
3.2.2 方程的形式解
3.2.3 参数分析与讨论
3.2.4 我国规范计算公式的发展
3.2.5 受弯构件正截面承载力计算
3.3 钢筋混凝土受弯构件的试验研究
3.3.1 矩形应力图参数的试验确定
3.3.2 受弯构件受压区混凝土的应力状态
3.3.3 钢筋混凝土受弯构件尺寸效应的试验研究
3.3.4 高强度混凝土受弯构件
3.3.5 受压钢筋配筋率对简支梁性能的影响
3.3.6 少筋梁的性能
3.4 轴力和弯矩共同作用
3.4.1 偏心受压构件的正截面承载力计算
3.4.2 关于偏心距增大系数
3.4.3 钢筋混凝土柱的试验
3.4.4 钢筋混凝土偏心受压柱的试验方法
3.5 小结
参考文献

第4章 钢筋混凝土结构及构件的受剪承载力
4.1 引言
4.2 钢筋混凝土构件受剪承载能力的基本概念和设计方法
4.2.1 钢筋混凝土简支梁的破坏形态
4.2.2 无腹筋梁的弯曲破坏和剪切破坏的关系
4.2.3 无腹筋梁剪切破坏的“拱一齿”模型
4.2.4 加筋石膏梁的抗剪试验
4.2.5 混凝土强度对钢筋混凝土梁抗剪强度的影响
4.2.6 钢筋与混凝土之间的黏结对无腹筋梁抗剪性能的影响
4.2.7 T形梁的受剪承载力
4.2.8 均布荷载作用
4.2.9 间接加载
4.2.10 小记
4.3 有腹筋梁的基本概念和传力机理
4.3.1 有腹筋梁受剪性能的基本特征
4.3.2 最小配箍率
4.3.3 最大配箍率
4.3.4 剪切延性
4.3.5 小记
4.4 钢筋混凝土连续梁的抗剪性能
4.5 预应力混凝土梁的受剪承载力
4.6 材料性能对混凝土梁受剪性能的影响
4.7 小结与评述
参考文献

第5章 钢筋混凝土梁受剪破坏的尺寸效应
5.1 早期的研究
5.2 1991年的“经典试验”
5.3 经典试验的重复与讨论
5.4 宽梁厚板的剪切破坏
5.5 评述
参考文献

第6章 受剪承载力理论模型与试验
6.1 引言
6.2 修正压力场理论的基本概念
6.2.1 基本假设
6.2.2 应变分析
6.2.3 平衡条件
6.2.4 本构关系
6.2.5 求解过程
6.2.6 评述
6.3 钢筋混凝土板的剪切试验
6.3.1 平板试验装置
6.3.2 钢筋混凝土平板单元剪切性能分析国际竞赛
6.4 钢筋混凝土软化桁架模型
6.4.1 背景
6.4.2 软化桁架模型的基本框架
6.4.3 休斯敦大学的平板试验装置
6.5 剪切试验装置的主要试验结果
6.6 关于修正压力场理论的讨论
6.6.1 引言
6.6.2 徐增全对修正压力场理论的批评
6.6.3 Collins的观点
6.6.4 修正压力场理论的发展
6.7 Kotsovos的发现和观点
6.7.1 压力路径的基本概念
6.7.2 钢筋混凝土简支梁抗剪机理——压力路径概念的试验证明
6.7.3 关于纵筋销栓力
6.7.4 骨料咬合力
6.7.5 T形截面梁的抗剪承载力
6.7.6 基于“压力路径”概念的抗剪设计
6.7.7 小结与评述
6.8 Zararis的研究
6.8.1 薄膜单元分析
6.8.2 钢筋混凝土梁的剪切破坏分析
6.8.3 评述
6.9 小结
参考文献

第7章 延性与约束混凝土
7.1 引言
7.2 圆钢管混凝土轴心受压短柱
7.2.1 试验研究
7.2.2 圆钢管混凝土短柱的性能与主要影响因素
7.2.3 被动约束与主动约束
7.2.4 圆钢管混凝土轴心受压短柱的承载力计算
7.2.5 钢管混凝土短柱承载力计算的全过程分析
7.3 箍筋约束混凝土柱
7.3.1 箍筋约束混凝土短柱轴心受压的试验结果
7.3.2 Mander等的研究
7.4 纤维约束混凝土
7.4.1 纤维约束混凝土的性能
7.4.2 FRP约束混凝土应力-应变曲线理论模型
7.5 约束混凝土非均匀受压
7.5.1 箍筋约束混凝土偏心受压柱
7.5.2 非均匀受压时箍筋的应力状态
7.6 小结与评述
参考文献

第8章 补遗
8.1 钢筋混凝土梁在弯扭共同作用下的承载力
8.2 冲切破坏之谜
8.3 钢筋混凝土结构非线性分析
8.3.1 钢筋混凝土板柱结构火灾事故分析
8.3.2 S1eipner A海洋平台的破坏
8.3.3 与S1eipner A海洋平台有关的试验与分析
8.3.4 钢筋混凝土板的国际竞赛
8.3.5 小结与评述
参考文献

后记
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证