世界数据分析研究组织成员撰写,企业级数据分析战略、技术、实施和管理的指南,
包含各种在项目和技术选择、数据分析型组织构建以及ROI测量方面被证实为好的实践,来自于金融、医疗、技术、零售、制造以及更多其他行业的全新研究案例。
当业务人员认识到数据分析的无穷潜力时,他们就会渐渐地把它当作一项企业资源和一件企业应该优先考虑的事情。现在,在大规模数据分析方面占有世界领先地位的研究学者们已经把今日这些用于企业级数据分析规划、实施、管理并取得成功的最佳实践汇集在了一起。
《大数据分析:数据驱动的企业绩效优化、过程管理和运营决策》总结了作者们在国际数据分析研究所中所做的创举性工作,阐述了整个数据分析的生命周期、解决技术、用途、运营、治理、战略以及更多其他内容,在利用专有数据、获取全新的360度客户视角、以各种可行的方式投入测量工作、优化“次优报价”、使用云计算资源并将数据分析直接与业务绩效相关联等方面提供了各种可行的解决方案。之后,在有关数据分析中最重要的“人”方面的内容中,他们讲述了从构建和治理数据分析型组织到整合数据分析于整个全球性业务之中这个过程里的每一件事情。
无论你是分析人员、经理、战略决策者、总监还是技术供应商,《大数据分析:数据驱动的企业绩效优化、过程管理和运营决策》都会帮助你更快速地实施大规模数据分析,从而赚取更多的价值。
适用于你的业务的数据数量正在呈指数方式地增长着。使用今日的数据分析工具和方法,现在你就能发现一些隐藏于其中的规律,这些规律揭示了发生这些事情的原因、预测了将来可能发生的事件并系统化地优化了你的成果。在本书中,Tom Davenport及其国际数据分析研究所的同事们向人们呈现了在该领域中所用的艺术手法现状,并且为了使你的企业组织得益于所用的数据和预测分析,还提供了一些经过证明是行之有效的企业战略。
《大数据分析:数据驱动的企业绩效优化、过程管理和运营决策》涵盖了数据分析规划和ROI计算、技术选择和实施、企业组织化问题、与业务绩效的关联性以及更多其他方面的内容。书中通过大量行业和业务职能的真实例子,展示如何在整个企业中成功地运用数据分析,不管是中小型企业还是全球性的大企业,都将从中获益。无论你是数据分析师还是消费者,也无论你的角色是技术型、运营型还是战略型,本书都深入浅出地向你阐释了企业数据分析的关键知识和技术。
译者序
序
前言
作者简介
第一部分 数据分析及其价值概述
第1章 谈及数据分析时我们到底在谈什么 2
1.1 我们为什么需要一个新术语:传统商务智能里的问题 3
1.2 三种类型的数据分析 4
1.3 数据挖掘适合什么 6
1.4 业务数据分析和其他一些类型 6
1.5 Web数据分析 7
1.6 大数据分析 7
1.7 结论 8
第2章 数据分析中的ROI 9
2.1 传统的ROI分析 9
2.1.1 现金流和ROI 10
2.1.2 构建一个可靠的ROI 11
2.1.3 其他用于决策制定的财务度量标准 11
2.1.4 ROI分析中其他注意事项 11
2.2 Teradata公司评估数据分析投资的方法 13
2.2.1 阶段1:验证业务目标并记录最佳实践用途 13
2.2.2 阶段2: 设想一下新功能 14
2.2.3 阶段3:对ROI和报告调查结果进行决策 14
2.2.4 阶段4:沟通 14
2.3 计算价值的一个例子 14
2.4 Freescale半导体公司中的ROI分析 15
2.4.1 背景和环境情况 16
2.4.2 在受高度影响的领域开始进行 16
2.4.3 让经理和领导参与进来 16
2.4.4 持续渐进的成长 17
2.4.5 吸取经验教训 18
第二部分 数据分析应用
第3章 为建立数据分析优势利用专有数据 22
3.1 管理专有数据和分析结果的问题 24
3.1.1 在IATA的PaxIS利用专有数据 25
3.1.2 一个利用专有数据的行业:客户支付 25
3.2 支付数据中的经验教训 28
第4章 Web数据分析:原始大数据 29
4.1 Web数据概述 30
4.1.1 你遗漏了什么 31
4.1.2 假设各种可能性 31
4.1.3 一个重要的新信息源 32
4.1.4 应该收集何种数据 33
4.1.5 对于客户隐私会怎么样 33
4.2 Web数据揭示了什么 34
4.2.1 购物行为 35
4.2.2 客户购买过程和购买偏好 35
4.2.3 搜索行为 36
4.2.4 反馈行为 38
4.3 Web数据实践 38
4.3.1 最优产品推荐 39
4.3.2 客户流失模型 40
4.3.3 客户响应模型 40
4.3.4 客户群体划分 42
4.3.5 广告宣传结果评估 43
4.4 本章小结 44
第5章 在线参与度分析 45
5.1 参与度定义 45
5.2 一个测量在线参与度的模型 47
5.3 对参与度记分的价值 49
5.4 PBS的参与度分析 50
5.5 Philly.com的参与度分析 51
第6章 通向零售业客户“最优产品推荐”之路 53
6.1 数据分析和通向有效进行“最优产品推荐”之路 54
6.2 推荐战略设计 55
6.3 了解你的客户 56
6.4 了解你的推荐 56
6.5 了解购买交易背景 57
6.6 分析和执行:决定和制定推荐 58
6.7 学习和适应NBO 60
第三部分 数据分析技术
第7章 在生产规模应用数据分析 64
7.1 和行为有关的决策 65
7.2 施加业务影响所花的时间 65
7.3 运营中的业务决策 66
7.4 服从问题 66
7.5 数据考量 67
7.6 在生产规模应用数据分析的实例:YouSee 67
7.6.1 潜在的解决方案 68
7.6.2 YouSee 成果 69
7.6.3 YouSee面临的挑战和吸取的经验教训 70
7.6.4 未来在产品规模应用数据分析的计划 71
7.7 来自其他成功公司的经验教训 71
第8章 云计算中的前瞻式数据分析 73
8.1 业务解决方案关注点 74
8.2 五大关键发展机遇 74
8.2.1 打包发布的以云计算为基础的“决策即服务”解决方案 75
8.2.2 用于软件即服务的前瞻式数据分析 75
8.2.3 用于历史遗留系统中的前瞻式数据分析 75
8.2.4 数据云建模 76
8.2.5 弹性计算模型威力 76
8.3 市场状况 77
8.3.1 早期采用者的竞争优势 77
8.3.2 决策管理增加了数据分析价值 77
8.3.3 可持续化的传统数据源优势 78
8.4 优缺点 78
8.5 采用以云计算为基础的前瞻式数据分析 79
第9章 数据分析技术和业务用户81
9.1 各自独立但不等同 81
9.2 阶段化数据 82
9.3 多用途 82
9.4 通用复杂性 82
9.5 以客户端和产品为基础 82
9.6 行业通用 83
9.7 完全可量化 83
9.8 业务部门驱动 83
9.9 特定的供应商公司 83
9.10 现有模型中的问题 84
9.11 数据分析技术中出现的变化 84
9.12 为未来创建数据分析应用程序 86
9.12.1 单用途、行业特定和简单化 86
9.12.2 以服务和解决方案为基础 87
9.12.3 集中式协调 87
9.12.4 整合供应商公司 88
9.13 总结 88
第10章 与企业绩效相关的决策和数据分析 90
10.1 一个决策和数据分析研究案例 90
10.2 相关的决策和数据分析 92
10.2.1 数据分析和决策之间的松耦合关系 92
10.2.2 结构化的人为决策环境 94
10.2.3 自动化的决策 96
10.3 关联决策和信息的过程 97
10.3.1 步骤1:对关键决策在战略上的重视 97
10.3.2 步骤2:信息和数据分析提供 98
10.3.3 步骤3:决策设计 98
10.3.4 步骤4:决策执行 99
10.4 展望决策管理的未来 100
第四部分 数据分析人力因素
第11章 组织管理数据分析人员104
11.1 为什么企业组织会在意 104
11.2 企业组织架构通用目标 105
11.3 特定数据分析型企业组织的目标 106
11.4 组织管理数据分析人员的基本模式 106
11.5 协调方案 109
11.6 何种模型适合你的业务 110
11.7 你能勇敢到何种程度 112
11.8 定位你的模型和协调机制 113
11.8.1 角度1:目前状态 113
11.8.2 角度2:数据分析成熟度 113
11.8.3 角度 3:数据分析策略/场景 114
11.8.4 角度4:反省抱负 115
11.8.5 角度 5:反省现实 115
11.9 数据分析领导力和首席分析官 116
11.10 应该向谁汇报数据分析职能工作 116
11.11 营造数据分析生态环境 117
11.12 逐渐发展数据分析型企业组织 118
11.13 底线 119
第12章 数据分析人才的工作投入度 120
12.1 四大数据分析人才种类 120
12.2 数据分析人员的工作投入度 121
12.3 让数据分析人员具备关键的业务信息 122
12.4 定义角色和期望 123
12.5 培养数据分析人员对新技能、工具和技术的热爱 123
12.6 运用更加集中化的数据分析企业架构 124
第13章 数据分析治理126
13.1 指导原则 126
13.2 治理要素 128
13.2.1 为什么需要治理 128
13.2.2 什么东西正在被人们治理着 130
13.2.3 应该如何对治理进行架构化 130
13.2.4 谁治理什么 132
13.2.5 如何对治理进行运营 134
13.2.6 如何让数据分析治理与其他的治理体系和方法相适应 135
13.3 何时知道自己正在成功的路上 135
第14章 构建全球化的数据 分析能力 137
14.1 广泛分布的地理差异 137
14.2 集中协调集中化的组织 139
14.3 强大的卓越中心 139
14.4 协调化的“分工”方案 140
14.5 其他一些全球化数据分析发展趋势 142
第五部分 数据分析应用案例研究
第15章 医疗合作系统公司146
15.1 Partners公司数据和系统集中管理 147
15.2 Partners公司的临床诊断信息技术管理 148
15.3 Partners公司的高绩效医学计划 150
15.4 Partners 公司在数据分析方面的新挑战 151
15.5 Partners公司的集中管理式业务数据分析 153
15.6 特定于医院的数据分析业务活动:马萨诸塞州综合医院 154
15.7 特定于医院的数据分析业务活动:女子医院 155
第16章 西尔斯控股公司HR职能部门中的数据分析159
16.1 我们做什么 159
16.2 谁造就了优秀的HR数据分析人员 161
16.3 我们最大化价值的秘诀 162
16.4 关键的经验教训 163
第17章 默克公司的商业数据分析文化和关系165
17.1 决策制定者的合作伙伴关系 166
17.2 团队成功的理由 166
17.3 将数据分析嵌入工具中 168
17.4 商业数据分析和决策科技未来的方向 168
第18章 Bernard Chaus 公司供应链中的描述性数据分析170
18.1 关注供应链的需要 171
18.2 数据分析加强了Chaus 公司IT和业务部门之间的同盟关系 173