搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
迁移学习:理论与实践
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787313106568
  • 作      者:
    邵浩著
  • 出 版 社 :
    上海交通大学出版社
  • 出版日期:
    2013
收藏
作者简介

  邵浩,上海对外经贸大学WTO研究教育学院讲师,日本国立九州大学工学博士,曾就读于中国科学技术大学管理学院硕博连读课程。研究方向为数据挖掘、管理科学与工程。

展开
内容介绍

  《迁移学习:理论与实践》着眼于管理实际中的资源再利用,对数据挖掘领域最前沿的迁移学习进行了详细阐述,并着重介绍了应用最为广泛的分类学习,将最前沿的研究进行了归纳总结,并通过实际算法分析,将领域内的最新进展提供给读者,使读者能够使用迁移学习的工具构建模型并应用到实际问题。《迁移学习:理论与实践》主要读者对象为具有管理和计算机背景并在数据挖掘领域有初步研究的学者。

展开
目录

Preface
Chapter 1 Introduction
1.1 Background and Motivation
1.2 COntributiong
1.2.1 Extended MDLP for Transfer Learning
1.2.2 Compact Coding for Hyperplane Classifiers in Transfer Learning
1.2.3 Transfer Active Learning
1.2.4 Gaussian Process for Transfer Learning
1.3 Book Overview

Chapter 2 Literature Review and Preliminaries for MDLP
2.1 Transfer Learning
2.2 Active Learning and Transfer Active Learning
2.3 Preljminaries for MD[.P

Chapter 3 Extended MDL Principle for Feature-based Transfer
Learning
3.1 IntroductiOn
3.2 Problem Statement
3.3 Preliminaries for Encoding
3.3.1 Theoretical Foundation of the EMDLP
3.3.2 Adaptation of the EMDLP to Our Problem
3.4 Supervised Inductive Transfer Learning Algorithm
3.4.1 EMDLP with Incremental Search
3.4.2 EMDLP with Hill Climbing
3.5 Experiments
3.5.1 Experimental Settings
3.5.2 Experimental Results on Synthetic Data Sets
3.5.3 Experimental Results on Real Data Sets
3.6 Summary

Chapter 4 Compact Coding for Hyperplane Classifiers in a
Heterogeneous Environment
4.1 Introduction
4.2 Problem Setting
4.3 Compact Coding for Hyperplane Classifiers in
Heterogeneous Environment
4.3.1 Macro Level:Arrange Related Tasks
4.3.2 Micro Level Evaluation
4.3.3 The Transfer Learning Algorithm
4.4 Experiments
4.4.1 Experimental Setting
4.4.2 Experimental Results
4.5 Summary

Chapter 5 Adaptive Transfer Learning with Query by
Committee
5.1 IntroductiOn
5.2 Problem Setting and Preliminaries
5.3 Probabilistic Framework for ALTL
5.4 The ALTL Algorithm and Analysis
5.4.1 The Procedure of ALTL
5.4.2 Termination Condition and Analysis
5.5 Experiments
5.5.1 Experimental Setting
5.5.2 Results on Synthetic Data Sets
5.5.3 Results on Real Data Sets
5.6 Summary

Chapter 6 Gaussian Process for Transfer Learning through
Minimum Encoding
6.1 IntrOduction
6.2 Gaussian Process for Classification
6.3 The GPTL Algorithm
6.3.1 Arrange Related Tasks
6.3.2 The Instance Level Similarities
6.4 Experiments
6.5 Summary

Chapter 7 Concluding Comments
Appendix A Target Concepts in Chapter 3
Bibliography

展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证