搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
细胞电生理学基本原理与膜片钳技术
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787030358455
  • 作      者:
    关兵才,张海林,李之望主编
  • 出 版 社 :
    科学出版社
  • 出版日期:
    2013
收藏
编辑推荐
  《细胞电生理学基本原理与膜片钳技术》适合于细胞电生理实验研究人员,尤其是日益增多的膜片钳使用者,并可以向医学和生物学领域的教师及研究生介绍不易理解的细胞电生理学基本原理与膜片钳技术。
  作者对细胞电生理及膜片钳技术这些不容易理解的电生物物理学问题做了详细的阐述,非常值得相关学科研究人员参考使用。
展开
作者简介
  关兵才,1988年毕业于兰州大学生物系,获理学学士学位;1993年毕业于同济医科大学生理学专业,获医学硕士学位;2004年~2007年在美国俄勒冈健康科学大学从事博士后研究;2007年~2008年于新加坡国家心脏中心做助研。因个人兴趣及环境条件使然,在电学、物化等电生理相关学科有较扎实的基础,对电生理的理解有一定独到之处,并有较丰富的实践经验,曾首次将全细胞膜片钳技术成功应用于耳蜗螺旋动脉段的在位平滑肌细胞。主要从事初级感觉传入信息的调制、血管细胞间缝隙连接以及细胞电生理技术本身的研究。发表学术论文20余篇,曾获湖北省自然科学优秀学术论文一等奖、武汉市优秀科技论文二等奖。现为生理学副教授、电生理高级实验师。
  另外,提倡科学思维与哲学思想的再融合,并对太极拳学、英国语言文学等有较深入的涉猎,著有《英语学习之路》(外文出版社)等。
展开
内容介绍
  《细胞电生理学基本原理与膜片钳技术》主要内容为:细胞膜的电学效应及其等效电路的分析,膜片钳实验系统工作原理、伪迹信号的消除和各种误差的补偿,电极的制备与溶液的配制,降低噪声和排除干扰的方法,膜片钳实验操作步骤与注意事项,膜片钳技术的扩展性应用,细胞电生理实验标本的制备,各种离子通道的生物物理及电生理学特性,细胞电生理学常见问题解答等,其中穿插与电生理学相关的电学基础知识、细胞电生理实践经验的介绍以及对某些理论问题较为深入的探讨。
展开
精彩书摘
  第一章绪论 第一章绪论
  细胞电生理学是一门理论与技术高度融合的学科,其理论性和实践性都比较强。此学科集电学、电化学和生物医学于一体,故细胞电生理学工作者需要对这几个方面都有一定深度的了解,才能对此学科真正略窥门径,而不至于在工作中犯自己难以察觉的错误。
  以膜片钳技术为发展高潮的细胞电生理学技术,在生命科学研究中,尤其是在离子通道、离子泵、离子转运体等生电性膜蛋白的功能及其相关的信使物质的研究中,一直发挥、且将继续发挥其他实验方法无法替代的作用。
  第一节细胞电生理学及其技术概述
  电生理学(electrophysiology)是研究生物体内的电现象的一门学科。细胞电生理学(cellular electrophysiology)则是研究细胞尤其是细胞膜的电现象的学科。由于细胞电现象是机体诸多生理活动的前提或功能表现,因此电生理学是生理学中最重要、最基本的内容之一。由于生物电是生物体内的物理现象,所以电生理学又隶属于生物物理学的范畴,是生物学和物理学的交叉学科。
  动物体内和植物体内均存在生物电现象,很多微生物亦然,但时至今日电生理学研究主要还是集中在动物体标本,尤其是动物的可兴奋组织或细胞。细胞电生理学研究则主要集中在细胞膜中具有电学性质的结构上,包括各种离子通道、离子泵及其他膜转运蛋白体、脂质双层本身,以及与它们相关联的受体、膜内和胞内信号转导系统等。由于技术问题,目前对细胞器的膜电现象了解较少,这方面有望成为未来的发展方向之一。
  电生理学是一门技术性非常强的学科,其技术本身即电生理学技术(electrophysiological techniques)便是该学科的重要组成部分,它是利用电子仪器结合电化学装置研究生物电现象的方法体系。记录生物电信号,需要用电极将电信号引导至放大器的输入端,经过放大器的放大和(或)阻抗变换及各种补偿调节等处理,将信号从放大器的输出端输出至记录系统(如示波器、笔录仪、微型计算机采样系统等)进行记录。
  我们先从不同的角度对电生理学技术进行基本分类。引导生物电信号,一般需要两个电极,这两个电极有时互为参比电极,但在多数情况下,其中一个作为参比电极[reference electrode,即接地电极(grounding electrode)],另一个作为探测电极[exploratory electrode, 亦有人习惯称之为记录电极(recording electrode)]。参比电极通常置于标本的细胞外液中,并与记录系统各点电位的公共参照点(即电路的“地”)相连接,因此在电生理学中习惯上将细胞外液作为零电位点(严格地讲这是在补偿了界面电位基础上的一种简化方法)。探测电极则根据实验目的放置于特定的部位,其放置部位不同,记得的信号及形成的记录模式不同。若将探测电极放置于细胞外,称为细胞外记录(extracellular recording), 可以用来记录探测电极尖端与参比电极之间的电位差(如场电位记录)或流过探测电极的电流(如细胞贴附式膜片钳)。若将探测电极尖端穿刺至细胞内,记录细胞膜两侧的电位差(如尖锐电极胞内电位记录)或跨膜电流(如双电极电压钳,此方法通常需要两根插入胞内的电极,见本节下述),则称为细胞内记录(intracellular recording)。
  另外,根据人为控制的电学参数不同,可以将电生理技术分为电压钳(voltage clamp)和电流钳(current clamp)。电压钳即在人为控制细胞膜两侧的电位差(膜电位)的条件下测定通过细胞膜的电流,电流钳则是人为控制经电极向细胞膜注射的电流而观察膜电位的变化。
  各种电生理技术均可按照上面的两种基本技术归类。下面对几种传统的电生理技术做一概念性简介,以便读者对电生理学技术有个轮廓性了解。
  传统的电生理教学性实验,如神经干动作电位的引导、减压神经放电、膈神经放电、大脑皮层诱发电位的记录等,以及一些临床电生理学检查,如心电图、脑电图、肌电图、耳蜗电图的描记等,均属于细胞外记录,记录的是两个引导电极间的电位差,或探测电极尖端相对于参比电极的电位值,体现的是多细胞电变化造成的场电位(field potential)的综合效应。因电极中几乎没有电流通过,属于电流钳中的零位钳流(zerocurrent clamp)。
  神经元单位放电(neuronal unit discharge)记录,即将探测电极(可用玻璃微电极或金属电极)置于单个神经细胞的外表面,记录该细胞兴奋活动过程中细胞外表面某一点与参比电极之间的电位差。因为参比电极也与细胞外液相连,两电极之间的短路效应较强,此电位差很小(一般几十到几百微伏)。可分析的指标有放电频率、幅度及诱发放电的潜伏期,以分析放电频率最为重要。神经元单位放电记录,是单个细胞的细胞外记录,也为零位钳流。
  传统的双电极电压钳(twoelectrode voltage clamp)技术,是针对体积较大的细胞,将两根电极(分别俗称电压电极和电流电极)刺入细胞内,电压电极用于引导记录膜电位,并将其与想要的电位水平即命令电位在负反馈放大器输入端相比较,只要二者有微小的差异,便由负反馈放大器的输出端通过电流电极给细胞注射电流,以保证膜电位基本等于命令电位,从而实现对膜电位的控制。电流电极和胞外的接地电极构成电流回路,电流较大时为了避免在浴液产生的压降对钳压的影响,常将接地电极分成控制细胞外电位的电极和测定电流的电极,后者用于记录钳制膜电位需要注射的电流。若细胞膜的通道状态发生改变(开放或关闭),则钳制膜电位需要注射的电流也会发生变化,此变化实际上相当于通道电流的变化,并反映了细胞膜电导的变化。如其名曰,此技术为电压钳技术,也属于细胞内记录。
  细胞内尖锐电极记录(intracellular sharp electrode recording),即用尖端非常细(<05μm)的玻璃微电极作为探测电极刺入细胞内,记录细胞膜内侧和置于细胞外液(如标本灌流液)中的参比电极的电位差(即膜电位)。我们通常狭义上说的细胞内记录(intracellular recording in its narrow sense)即指此方法。记录时通过电极的电流一般为零,也可以通过电极对细胞施以可调节的方波电流刺激,或注射持续电流改变基础膜电位,故此方法属于电流钳。当通过电极的电流为零时即为零位钳流。
  现在盛行的膜片钳(patch clamp)技术,电学参数的钳制和记录采用同一个玻璃微电极完成,因其尖端开口通常较粗,所以也被称为玻璃微细管。将玻璃微细管吸附于细胞表面,形成吉欧级(>109Ω)高阻封接(gigaseal),若记录玻璃微细管口下面的一小片细胞膜中的通道(一个或几个)的活动,为细胞贴附式(oncell /cell attached)膜片钳记录。以此为基础,还可形成全细胞式(wholecell)、内面朝外式(insideout)、外面朝外式(outsideout)三种记录构型(详见第三章“膜片钳技术基本理论与方法”)。因为玻璃微细管尖端处于细胞外,所以膜片钳技术属于细胞外记录。这也是德国HEKA公司将其生产的膜片钳放大器系列称为EPC(extracellular patch clamp)的原因。膜片钳实验工作模式既可设为电压钳,也可设为电流钳。
  ……
展开
目录
前言
第一章 绪论
第一节 细胞电生理学及其技术概述
第二节 细胞电生理学发展简史
第三节 怎样学习掌握细胞电生理学及其技术
一、调整改善电生理学工作者的知识结构
二、理论与实践相互促进
主要参考文献

第二章 细胞膜电学效应基本原理
第一节 离子通道与跨膜离子浓度梯度共同构成“微电池”
一、离子通道与其可通透的离子构成以离子的平衡电位为电动势的浓差电池
二、离子平衡电位的计算——Nernst公式
三、体液中主要离子的平衡电位
四、离子通道的电导及用一段含源电路的欧姆定律描述离子通道
五、离子电流的反转电位(零电流电位)初说
第二节 细胞膜及细胞内液、细胞外液的电容效应
第三节 离子泵的双重电学效应
一、离子泵的活动既是通道电源效应的前提,本身又可直接产生电源效应
二、钠钾泵电流的平衡电位
第四节 其他膜转运蛋白的电学效应
一、细胞膜上的其他转运蛋白
二、例解:钠钙交换体及其平衡电位
第五节 细胞膜的电路模型及其初步分析
第六节 细胞膜对离子的通透性与GoldmanHodgkinKatz方程
一、离子的扩散与在电场中的运动:扩散系数与离子淌度及其影响因素
二、膜对离子的通透性与电导
三、GHK电流方程和电压方程
主要参考文献

第三章 膜片钳技术基本理论与方法
第一节 膜片钳技术概述
一、“膜片钳”的基本含义
二、膜片钳记录的基本构型
第二节 膜电位钳制条件下检测膜电流的意义简析
一、为何在细胞电生理学研究中常需要钳制膜电位?
二、膜电位钳制在稳恒水平时的通道电流简析
三、当膜电位从一个钳制水平阶跃到另一水平时的通道电流简析
四、再说反转电位
第三节 膜片钳技术基本原理
一、膜电位钳制和电流检测的实现
二、电流钳制与膜电位的监测
第四节 偏移电位的补偿
一、什么是偏移电位
二、为什么要补偿偏移电位
三、怎样补偿偏移电位及其变化(主要是液接电位的变化)
四、液接电位的测量
五、不同记录构型下的偏移电位补偿
六、局部灌流产生的界面电位和改变浴液Cl-浓度引起的电极电位改变的补偿
七、结语
第五节 电压钳模式下的电容补偿和串联电阻补偿
一、电容补偿
二、串联电阻的补偿
第六节 漏电流的含义及其减除的意义和方法
一、漏电流的含义
二、膜片钳中的漏电流减除
第七节 膜片钳实验中信号的基本处理——滤波与采样
一、滤波
二、采样
第八节 细胞浴液和电极内液的配制及保存
一、细胞浴液
二、电极内液
第九节 膜片钳实验用电极的制备和安装
一、Ag/AgCl电极丝和玻璃微电极的制备
二、接地电极和记录电极的安装
第十节 膜片钳实验基本操作步骤、细节说明及注意事项
一、全细胞式膜片钳基本操作步骤、细节说明及注意事项
二、单通道记录基本操作说明
三、其他注意事项
第十一节噪声与干扰及其排除方法
一、膜片钳记录系统本身的噪声
二、干扰及其排除方法
第十二节穿孔全细胞膜片钳技术
一、概述
二、常用穿孔剂的作用特点和使用方法
三、穿孔全细胞膜片钳技术的优缺点
主要参考文献

第四章 膜片钳技术的扩展性应用
第一节 离体脑片膜片钳记录技术
一、离体脑片的制备及培养
二、脑片膜片钳记录的实验装置
三、离体脑片膜片钳记录的基本操作步骤
四、离体脑片膜片钳记录的应用
五、脑片膜片钳记录技术的几点说明
第二节 应用膜片钳技术检测细胞的分泌活动
一、全细胞记录构型的等效电路
二、膜电容检测的时域法
三、膜电容检测的频域法
四、膜电容检测示例
五、膜电容检测技术相关问题的讨论
第三节 穿孔囊泡外面朝外式单通道记录
第四节 高阻封接宏膜片钳记录
第五节 松膜片钳技术
一、概述
二、松膜片钳技术的实施方案
第六节 巨裁膜片钳技术
主要参考文献

第五章 自动膜片钳技术
一、自动膜片钳技术原理
二、传统膜片钳技术与自动膜片钳技术比较
三、自动膜片钳技术的应用
四、结语与展望
【附】自动膜片钳仪器简介
主要参考文献

第六章 细胞电生理实验标本的制备及记录中的加药方式
第一节 细胞电生理实验标本的制备
一、急性或新鲜分离细胞标本
二、培养细胞标本
三、表达细胞
四、脑片标本
五、微动脉段标本
六、溶液的配制
第二节 细胞电生理实验中的加药方式
一、细胞外给药
二、细胞内给药
主要参考文献

第七章 钠通道
第一节 电压门控性钠通道概述
一、电压门控性钠通道的分子结构
二、电压门控性钠通道的命名和分类
三、电压门控性钠通道的基因
四、电压门控性钠通道的功能
第二节 电压门控性钠通道的离子通透性和门控机制
一、电压门控性钠通道的通透性
二、电压门控性钠通道的门控机制
第三节 电压门控性钠通道的生物物理学特征
一、电压门控性钠通道的电流电压关系曲线
二、电压门控性钠通道的激活与失活特征
第四节 常用钠通道调节剂及作用机制
一、钠通道工具药
二、局部麻醉药
三、抗癫痫药
四、Ⅰ类抗心律失常药
主要参考文献

第八章 钙通道
第一节 概述
第二节 电压门控性钙通道的结构及生物物理学特性
第三节 电压门控性钙通道的离子通透性和门控机制
一、电压门控性钙通道的选择性和通透性
二、电压门控性钙通道的门控机制
第四节 各类电压门控性钙通道的特征、分布和功能
一、L型钙通道
二、T型钙通道
三、P/Q型钙通道
四、N型钙通道
五、R型钙通道
第五节 电压门控性钙通道的药理特性
一、激动剂
二、阻滞剂
三、药物作用机制
第六节 其他类型钙通道
一、受体操纵性钙通道
二、钙库调控性钙通道
三、IP3受体
四、ryanodine受体
主要参考文献

第九章 钾通道
第一节 电压门控性钾通道概述
第二节 钾通道的结构及功能特性
一、钾通道对钾离子的选择性
二、钾通道的门控结构
三、电压门控性钾通道的电压敏感性
四、电压门控性钾通道的失活
第三节 不同种类电压门控性钾通道的电生理记录方法
一、A型钾通道
二、延迟外向整流钾通道
三、介导M电流的电压门控性钾通道
四、超速激活的延迟整流钾通道
第四节 电压门控性钾通道的生理功能及病理意义
第五节 电压门控性钾通道的药理特性
第六节 其他类型钾通道
一、钙激活的钾通道
二、内向整流性钾通道
三、双孔区钾通道
四、内向整流性钾通道、双孔区钾通道与电压门控性钾通道亚基的基本结构比较
主要参考文献

第十章 氯通道
第一节 钙激活的氯通道
一、CACC通道的分子基础
二、CACC通道拓扑结构
三、CACC通道的生理作用
四、CACC通道的生物物理学特性
五、CACC通道离子通透及门控机制
六、常用CACC通道调节剂及作用机制
第二节 电压依赖性氯通道
一、ClC通道家族简介
二、ClC通道的拓扑及三维结构
三、ClC通道的生理作用
四、ClC通道的生物物理学特性
五、ClC通道离子通透性及门控机制
六、常用ClC通道的调节剂
第三节 环核苷酸激活的氯通道
一、环核苷酸激活的氯通道简介
二、CFTR通道的结构及生理特性
三、CFTR通道的生理功能
第四节 细胞体积调节的氯通道
一、细胞体积调节的氯通道简介
二、细胞体积调节的氯通道生理学特性
第五节 氯通道研究及分析方法
一、氯通道研究中电极内外液构成及注意事项
二、Ussing槽和短路电流记录方法
主要参考文献

第十一章配体门控离子通道
第一节 配体门控离子通道的界定
第二节 尼古丁型胆碱能受体通道
一、尼古丁型胆碱能受体通道概述
二、尼古丁型AChR的激活与阻断
三、尼古丁型ACh受体激活电流的浓度效应关系
四、尼古丁型ACh受体通道功能的别构性调制
第三节 5羟色胺3受体通道
一、5羟色胺3受体通道概述
二、5HT激活电流的浓度效应关系
三、5HT激活电流的电流电压关系
四、5HT3R功能的调制
第四节 γ氨基丁酸A型受体通道
一、γ氨基丁酸A型受体通道概述
二、GABAAR功能的调制
第五节 离子型谷氨酸受体
一、离子型谷氨酸受体概述
二、离子型谷氨酸受体的功能特征和意义
三、NMDAR的亚基组成及其配体
四、AMPAR与NMDAR的协同作用
五、NMDAR介导电流的调制
第六节 离子型ATP(P2X)受体通道
一、离子型ATP(P2X)受体通道
二、P2XR功能的调制
第七节 LGIC的表型和基因型的关系
一、躯体感觉传入神经元P2XR的表型与基因型的关系
二、内脏感觉传入神经元P2XR的表型与基因型的关系
第八节 酸感受性离子通道的电生理研究
一、酸感受性离子通道概述
二、大鼠DRG神经元4种类型H+门控离子通道电流
第九节 TRP通道的电生理研究
一、TRP通道概述
二、TRP通道与温度感觉及伤害性感觉
三、TRPV通道
第十节 GPCR对LGIC功能的调节作用
一、缓激肽受体激活对5TH3受体介导电流的增强作用
二、缩宫素受体激活对P2X受体介导电流的负性调制作用
三、P物质激活其NK1受体对GABAAR及5HT3R功能的反向调制作用
主要参考文献

第十二章细胞电生理学常见问题解答
一、什么是膜输入电阻、膜电阻、膜比电阻、被动膜电阻、膜输入电容?
二、什么是时间常数和空间常数?
三、膜片钳中的命令电压、维持电压、刺激电压有何区别?
四、什么是维持电流?
五、膜电位升高、降低、增大、减小的使用是否有统一规定?
六、什么是通道的整流特性?
七、入口电阻和串联电阻是否是一回事?
八、为什么用于量效关系曲线拟合的Hill方程在不同文献中形式不同?Hill系数的含义是什么?
九、什么是尾电流?测定尾电流有何意义?
十、Rundown、脱敏、失活、衰减几个概念有什么区别?
十一、请解释电压依赖性离子通道的激活、失活、去活、复活几个概念
十二、如何获得电压门控离子通道的激活曲线和失活曲线?
十三、在全细胞膜片钳的电压钳模式下,把维持电位设定于静息电位水平,为什么加入神经兴奋性药物还会引起电压依赖性通道(如钠通道)开放而产生动作电流?
十四、全细胞膜片钳实验中,因串联电阻的影响造成的钳位误差有何基本规律?
十五、细胞膜对不同离子的电导之比等于通透系数之比吗?
十六、电极内液和细胞浴液的渗透压哪个略大为宜?
十七、膜片钳实验中电极与细胞膜之间封接不佳对电流记录有什么影响?
十八、Nernst平衡电位、GoldmanHodgkinKatz平衡电位和Donnan平衡电位有什么区别?
十九、什么是漏电流?
二十、什么是门控电流?
二十一、什么是窗口电流?
二十二、EGTA、EDTA和BAPTA的作用有何不同?
二十三、膜片钳实验中,电极进入浴液后电流基线漂移该如何处理?
二十四、膜片钳初学者使用Axon膜片钳实验系统如何起步?
二十五、使用Axon膜片钳实验系统时,在哪里设置维持电位为佳?
二十六、膜片钳实验中,玻璃电极进入浴液后,测试电压方波引起的响应电流方波幅度变大、变小或消失是何原因?
二十七、用Axon膜片钳实验系统在封接过程中,某一个或数个被监测的电学参数值为何变成红色箭头?
二十八、用Axon膜片钳实验系统在封接过程中或破膜后监测电学参数时,调节测试更新速率为何会引起电学参数值的变化?
二十九、平衡电位、反转电位和零电流电位是一回事吗?
三十、为什么电极刚进入浴液后,膜片钳放大器总是出现饱和现象?
三十一、如何排除50Hz的正弦波工频干扰?
三十二、可兴奋细胞膜的阈电位的电学实质是什么?
三十三、什么是空间钳位误差?如何避免之?
三十四、用Axon公司的膜片钳实验系统,如何同时进行电压刺激下的电流反应记录和电流的连续性背景记录?
三十五、对于药物引起的电流和电压激活的电流,使用斜坡电压刺激做IV曲线分别有什么要求?
三十六、膜片钳实验中,能否根据电压钳模式下的膜输入电阻和加药引起的电流幅度,推测电流钳模式下同样的加药刺激引起的膜电位变化幅度?
三十七、膜片钳记录数据中的电流和电压基本参考方向(正方向)是怎样约定的?
三十八、细胞膜在非钳压状态下,如果出现内向电流或外向电流,膜电位会如何改变(去极化还是超极化)?
主要参考文献
附录细胞电生理学与膜片钳技术专业术语英中文对照表
作者简介
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证