前言
第一章 预备知识
1.1 若干记号
1.2 几个初等不等式
1.3 空间Lρ(Ω)
1.3.1 几个常用不等式
1.3.2 完备性,Lρ(Ω)与L∞(Ω)之间的关系
1.3.3 整体连续性
1.3.4 可分性、一致凸性与自反性
1.4 H61der空间
1.5 磨光
1.6 空间Lρ(Ω)的紧性
1.7 截断与分解
1.8 弱导数
习题
第二章 各向同性的整指数S0bolev空间
2.1 定义和初等性质
2.2 逼近
2.2.1 用光滑函数局部逼近
2.2.2 用光滑函数整体逼近
2.2.3 用整体光滑函数逼近
2.3 延拓
2.4 边界迹和迹定理
2.5 空间W1ρ(Ω)的基本性质
2.5.1 复合函数的性质
2.5.2 水平函数的性质
2.5.3 差商和空间W1ρ(Ω)
2.5.4 Lipschitz函数和空间W1∞(Ω)
2.6 sobolev不等式和Morrey不等式
2.6.1 Sobolev不等式
2.6.2 Morrey不等式
2.6.3 Morrey空间,Riesz位势与H61del,连续函数
2.7 空间Wkp(Ω)中的嵌入定理
2.8 空间Wkp(Ω)中的紧嵌入定理
2.9 Poincar6不等式
2.10 迹定理(续)
2.11 内插不等式,Wkp(Ω)中的等价范数
2.12 空间H-1(Ω)的刻画
2.13 嵌人定理的补充和反例
2.13.1 集合的光滑性
2.13.2 一般开集情形的嵌入定理
2.13.3 反例
2.14 作为Banactl代数的空间□
2.15 关于嵌入常数的补充
习题
……
第三章 各向同性的实指数S0bolev空间
第四章 Morrey空间,Campanat0空间和BM0空间
第五章 关于z与t异性的S0bolev空间
附录 实变函数与泛函分析中的一些基本结论
参考文献
索引
展开